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Why would having access to the Q's be better?



AGGREVATE: Expert provides values

Just like DAGGER

Fori =0 ... N-1

Roll-in learner x; to get {s ~ d_}

Query expert for advantage vector A*(s, . )

Aggregate data Y <« D U {s,A*(s,.)} 139,0.- <)

Train policy 7, = E; gx..g(A*(s, 7(5)))



Imitation Great for Robotics!



But.... sometimes hard to get humans
1) to do the task well
2) generate enough data
3) provide “critic’ or Q-values



So let's just make the computer the teacher!



So let's just make the computer the teacher!
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Privileged Information: UAV Navigation
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Chapter 4

Example: Online Imitation Learning (DAgger)

Goal: learn a reactive policy to drive as
fast as possible without crashing by
mimicking an expert.

2 G
RGE image wheel speed el el T steering  throttle

algorithmic exgert:
can be queried
given any state

Georgla cOIIege of o N



1. https://www.youtube.com/watch?v=hUoDNeZS4s0
2. https://www.youtube.com/watch?v=FsRP4rEYiLl
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https://www.youtube.com/watch?v=hUoDNeZS4so
https://www.youtube.com/watch?v=FsRP4rEYiLI

Privileged Information: Legged Locomotion

Simulation environment
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[Lee et al. 2020}



A Policy training B Automatic terrain curriculum
i“*"&e’w‘a"ﬁ' Parameterized terrains
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Fig. 4. Overview of the presented approach. (A) Two-stage training process. First, a teacher policy is trained using reinforcement learning in
simulation. It has access to privileged information that is not available in the real world. Next, a proprioceptive student policy learns by imitat-
ing the teacher. The student policy acts on a stream of proprioceptive sensory input and does not use privileged information. (B) An adaptive
terrain curriculum synthesizes terrains at an appropriate level of difficulty during the course of training. Particle filtering is used to maintain a
distribution of terrain parameters that are challenging but traversable by the policy. (C) Architecture of the locomotion controller. The leared
proprioceptive policy modulates motion primitives via Kinematic residuals. An empirical model of the joint PD controller facilitates deployment
on physical machines.
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Unigrasp (and others): Distilling Grasping in simulation

Yinzhen Xu, et al. 2023
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Privileged Information: Self-driving

0
<- Privileged .0
agent o8|
i = 0 5
NND ]

imitation
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e Nage

i Privileged Sensorimotor | = 1
0 ® agent
o ° agent
. 0,
(a) Privileged agent imitates the expert (b) Sensorimotor agent imitates the privileged agent

[Chen et al. 2020]



Privileged Information: Motion Planning

Choudhury et al. 2018]



Part 3: Visuo-
Tactile Simulation
for Policy Learning

Key strategies:

* Fast Tactile Simulation using
compliant contact modeling

» Using pretrained critic with
augmentation for sim2real

transfer Touch Sensor

Akinola, Xu et al, TacSL: A Library for Visuotactile Sensor Simulation and Learning, T-RO 2025
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Visuo-tactile sensors

High-resolution tactile sensing in Real

Ny Virtual camera

Mirror

Camera
o (120° FOV)
I LEDs
—_—— Clear acrylic

Elastomer

Real visuo-tactile sensor Schematic of Gelsight R1.5
Wang et al.
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Simulating visuo-tactile sensors

Which row is real and which is simulated?

o . . . . . .
- . . .. ..



Visuo-tactile sensors

High-resolution tactile sensing in Simulation

Tactile Force Field
Xu et al 2022
>300x
speed up
>200x
speed up
Tactile RGB (Si & Yuan 2021)




Tactile Policy Learning

Tactile policy learning in simulation
r————'v \




Transferring Visuo-tactile Policies from Sim to Real
Dealing with manufacturing sensor variations

Real Simulated
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Transferring Visuo-tactile Policies from Sim to Real
Image augmentation of simulated readings during policy learning

Real .. . ..

Simulated
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AACD Policy Learning Algorithm

Reinforcement Learning with High-Dimensional Image Augmentation

————————————————————————————————————————

AAC-RL: low-dim expert

‘_ ---------------------------------------

AACD-RL: high-dim student

I e - N

: Privileged States > Expert : : Observations available in > Student

: _ (e.g., contact forces) | Policy : : . the real world ) Policy

: N : R

| i Privileged States ) > Expert ) E : i Privileged States ) > Student )

I _ (e.g., contact forces) Critic ! : _ (e.g., contact forces) Critic

1 | : : .

\ | y ' |
\______________________________i ________________________________________ r ________ -

L - — — _ _ _ Pretraned _ _ _ _ _ _ _ _ _ |
Weights

AACD leverages a pre-trained critic to guides high-dimensional RL
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Tactile Policy Transfer to the real robot

Robustness to physical disturbances and acute illumination changes.

Peg-placement policy Peg-insertion policy

28



We have a recipe of sorts

* 1) Build a simulator

* 2) Learn (or use planning) to solve for a teacher policy in simulator using whatever
privileged information makes the problem easier

* Optional: learn policy that is “Bayesian Robust”/Domain Randomization

* 3) Train (on policy) a student policy that uses the modality of input the real world will
provide (e.g. simulated camera images) with the teacher policy providing corrections

* Optional: use teacher critic instead of just actions
* 4) Use in real world

* Optional: RL fine tune in the real world



An Ode to Imitation Learning

All of these approaches assumed
that learner and expert
work in the same information space



The notion of a POMDP




Imitating Experts with Privileged Information

|
4|'_ Imitate
Q%ﬁ —

Learner Expert
w/ limited sensing can see further



Contextual Markov Decision Process (MDP)

<S.A,¢.R.I >

State Actions Context Rewards Transitions

At the beginning of each episode, a context is sampled from p(c)
and is held fixed until the next reset

Context can affect both transitions and rewards

Expert sees context, but learner does not!

33



Just accumulate history
and do Behavior Cloning?

34



Just do Behavior Cloning!

1. Collect data from experts (who know the context)

56‘1 a6‘<, S;k, a{k, ., S}k

2. Train a policy that maps history to action

koK sk . kK K
= {s ar ., t—1"‘ Sl k} T . ht —

Rationale: Sure we'll make errors in the beginning, but we
will always be recoverable and asymptotically imitate the expert

35



Behavior cloning mostly works fine?

Environment Expert BC
CartPole 500 £+ 0 500 £ 0
Acrobot —71.7+11.5 | —78.44+ 14.2
MountainCar | —99.6 = 10.9 | —107.8 = 16.4
Hopper 3554 £ 216 3258 £ 396
Walker2d 5496 + 89 5349 4 634
HalfCheetah 4487 4 164 4605 £ 143
Ant 4186 4+ 1081 3353 & 1801

[SCV+ arXiv '21]

100

BC

79

50 /
25 i
.1l

D4RL Human-Experts

[Florence et al. "21]

In NLP, standard

practice is to do
Teacher Forcing ...
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Tales from the Road:

A curious case of
belligerent lane changing




Example: Learning to Lane Change

EXIT Features
A

® Distance to exit

® Disabled vehicle on shoulder?

® [raffic congestion level?

e Past action (Y / N)

e Should | execute lane change? (Y / N)

33



Just do Behavior Cloning!

Train Data (Human Demonstrations)

=z =2 =2 Z

—
-

™

~ ~
= )

—

o @ | W

< < <

|[Pomerleau’91]}

1. Collect data of
humans lane changing

2. Train a classifier

99%

accuracy!!




What happens at test time ...




Why didn't we abort the lane change?’

Train Distribution Learnt Policy
(human driving)

Exit distance

Current

Disable vehicle Action

Past Action

"Do what | did in previous
cycle”

41



Why didn't we abort the lane change?’

Test Distribution #  Train
(robot driving)

"
”H* Exit distance

Latching Effect
where the learner
repeats past
action

~

7' ! Disable vehicle

s Past Action

(4 N\
. U

x ¥ | . Py s »
. >, Do o l' {' ~ A/«, /
g “ o . 8 (,'
W s

™

Current
Action
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Feedback drives

covariate shift

Creates a

“Latching effect”
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“Latching Effect”

the inertia problem. When the ego vehicle is stopped
(e.g., at a red traffic light), the probability it stays static is
indeed overwhelming in the training data. This creates a
spurious correlation between low speed and no acceleration,
inducing excessive stopping and difficult restarting in the

imitative policy ...’

“Exploring the Limitations of Behavior Cloning for Autonomous Driving.”
F. Codevilla, E. Santana, A. M. Lopez, A. Gaidon. ICCV 2019

i

During closed-loop inference, this breaks down because
the past history is from the net’'s own past predictions. For
example, such a trained net may learn to only stop for a stop
sign if it sees a deceleration in the past history, and will
therefore never stop for a stop sign during closed-loop
inference ..."”

“ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst”. M.
Bansal, A. Krizhevsky, A. Ogale, Waymo 2018

in self-driving

{

... small errors in action predictions to compound over
time, eventually leading to states that human drivers
infrequently visit and are not adequately covered by
the training data. Poorer predictions can cause a
feedback cycle known as cascading errors ...”

“Imitating Driver Behavior with Generative Adversarial Networks".
A. Kuefler, J. Morton, T. Wheeler, M. Kochenderfer, IV 2017

Scenario A: Full Information

policy attends to brake indicator

“Causal Confusion in Imitation Learning".
P. de Haan, D. Jayaraman, S. Levine, NeurlPS ‘19
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An old problem in self-driving

“Using multiple successive frames as input would seem like a good idea since the
multiple views resulting from ego-motion facilitates the segmentation and
detection of nearby obstacles ... the current rate of turn is an excellent predictor
of the next desired steering angle ... Hence, a system trained with multiple
frames would merely predict a steering angle equal to the current rate of turn as
observed through the camera. This would lead to catastrophic behavior in test
mode. The robot would simply turn in circles.”

"Off-Road Obstacle Avoidance through End-to-End Learning”
Y. LeCun, U. Muller, J. Ben, E.Cosatto, B.Flepp, NeurlPS 2005
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Latching effect in NLP

Beam Search “The main problem is that mistakes made early in the
.to provide an overview of the sequence generation process are fed as input to the model and
current state-of-the-art in the field can be quickly amplified because the model might be in a part
of computer vision and machine . .. C
learning, and to provide an of the state space it has never seen at training time.
' f th
gt\?c;v-lgfﬁﬁ e_;rf i(;]utr}:eenfti ald of "Scheduled Sampling for Sequence Prediction with Recurrent Neural

computer vision and machine Networks.” Bengio, S., Vinyals, O., Jaitly, N., & Shazeer, N. (2015).

learning, and to provide an
overview of the current
state-of-the-art in the field of

computer vision and machine Thus, the model trained with teacher forcing may over-rely on

learning, and to provide an previously predicted words, which would exacerbate error propagation
overview of the current

state-of-the-art in the field of “On exposure bias, hallucination and domain shift in neural

computer vision and machine machine translation.” Wang, C., & Sennrich, R. (2020).

learning, and...

“The probability of a repeated
phrase increases with each

@ D e epMin d Technical Report
2021-10-22

repetition, creating a positive Shaking the foundations: delusions in
feedback loop” sequence models for interaction and control
The curious case of neural text de-generation jecto (;rl:fgj*’ Markus K“'l‘e;c,:’; ﬁri§°;r:1.Delitanf*;1Tif e ew.ei'f*’CJordi Ty a;;:l’iel ::n.essl’ s
onas Buchlil, Jonas Degrave!, Bilal Piot!, Julien Perolat!, Tom Everitt!, Corentin Tallec!, o Parisottol,
Ho/tzman, A., Buys, J-r D u, L'r For bes, M - & ChOi, Y. (2019) . Tom Erez!, Yutian Chenngcott Reed!, Marcus Hutter!, Nando de Freitas! and Shane Legg1

"Deepmind Safety Analysis, !DeepMind



Solution: Interactively query expert




Solution: Interactively query expert

11 |
.ﬂ_ | _ e.g DAGGER

Z

1. Roll out learner

2. Query Expert

‘ ' 3. Aggregate Data

and repeat!




On-policy (Aggrevate)

[Choudhury 2018]
Example: Training search heuristics

Behavior Cloning

Why / When does
this work?

Proved that this
approximates
Hindsight Optimization /
QMDP

Fails when you need to
explicitly explore (i.e.
asymptotic realizability not

hold)



Wait ... isn't this the
same old covariate shift
problem?

50



Expert becomes realizable over time



A-;; Why is behavior cloning so flaky?

In many cases it works just fine!
- matches state of the art in many offline RL problems

- standard practice in NLP (teacher forcing)

But often times it creates this undesirable latching effect
- extensively reported in self-driving, language models, etc

On-policy algorithms work consistently well

52



A Toy Bandit Example

https://github.com/gkswamy98/sequence model il/blob/master/
ConfoundedBandit.ipynb



Learner only
sees binary

feedback

r

0

r=1

r=1

r=1

54



Feedback can
be noisy!

(60195)

r=0

r=1

r=1

r=1
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Imitate

56



expert knows
the context

57



Human
expert can
be noisy

(€01))

r

0

r=1

r=0

r=1
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Goal: Bound average performance difference




Assumptions!

1. Recoverability

Bounds the total cost incurred
for an expert to recover from
L 3 an arbitrary mistake

»
J-”-h-
—’(
P

2. Asymptotic Realizability

Learner performs as well as ™ -

the expert after observing a
long enough history

] vel Cost: &
1 i i
' 3
| I
o ]
G
1




Trial 1: Behavior Cloning
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Trial 1: DAGGER

‘1' e )
QW AN ’ SY‘ —~
AN A7
NV ¥ N\ N V4
A\ ) W\ VU J
\ Y | Y U/
] A\ % /
5 ,—r 1§ S
| \ ¢ S
) N ¢
exp . | ' |

0.0

€obs

Correct Door: 4

11.0.2.3.4.4.4. 4.4 4 4 4. 4 4 4. 4.4.4.4.4.4 4 4 4

4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.4 4. 4.4 4.4 4 4 4 4 4

4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.4 4.4 .4 4 4. 4 4,

4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.4 4. 4.4 4.4 4 4 4 4 4

4. 4.4, 4]



BC performs similar to random actions!

Eobs — 0.3, eexp = (.2

O
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© 0.4
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0 500 1000 1500 2000
t
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Okay, so BC consistently
fails and DAGGER

consistently works?

o4



Trial 1: Behavior Cloning
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Trial 2: Behavior Cloning
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Trial 3: Behavior Cloning
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Trial 4: Behavior Cloning
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What about DAGGER?
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Trial 2: DAGGER
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Trial 3: DAGGER
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Trial 4: DAGGER
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Green: After T=1000, learner picks the right arm
(more green is good)
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Recoverability

means this i1s small
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Asymptotic
Realizability means
this goes to zero

as I — oo
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What happens with
behavior cloning?

Density ratio
explodes!

1] £y —J
?( (77) — J(7))

:EhtNd,Q”(ﬂE(St’ C) 7 ﬂ(ht))

dt

”(ﬂE(Sta C) 7 ﬂ(ht))
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Make mistakes initially

Gets feedback on
histories it generates

Asymptotic
realizability ensures
performance difference
goes to zero

Make mistakes initially

History diverges from
expert history

As the density ratio
blows up, performance
difference blows up

/3



Half-Cheetah
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Context (c) here
Is the latent speed
that the robot should
run at.

Expert sees context

| earner sees indicator
feature 1(v>=c)

(From Finn et al. 2017)
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Does training from the privilege expert lead to the optimal
policy (for the student)?
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What does it approximate?



The Q-MDP Approximation for POMDPs
(Aka Hindsight Optimization)

QMDP

* Relax “partial” observability
— The state of environment is fully observable after one action
e After one action we solve MDP, i.e use Q-value of MDP
* We are currently uncertain
— Use expected Q-value

QMDP MDP (S)

(s, a) =R(s, a) + vyYXT(s, a, sV

Q""" (b,, a) = 3b,(5)Q""" (s, a)

VQMDP(bt) = argmax, QMDP(bt,a)
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Sequence Model Imitation Learning with
Unobserved Contexts

Swamy, G., Choudhury, S., Bagnell, J. A., & Wu, Z. S,
(NeuRIPS 2022)

Structural Causal Model From 0-1 loss to
perspective Moment Matching
On-policy Off-policy
00O ~ ,,
v Eon(t) o ?uP U~ [f(htaa't) i 43a’r\an(st,c) [f(htaa,)]]a

f€Fon

Eoff(t) o ~SU-P £T~7rE [f(hta a't) o 4:a,’rvﬂ‘(ht)[‘)‘E(hta CL,)]],
fe-Foff
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