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17-740 Spring 2025

Algorithmic Foundations of Interactive Learning

Lecture 2: Intro to Online Learning / Weighted Majority

Lecturer : Drew Bagnell

Scribe: Gokul Swamy

2.1 The Problem of Induction

Machine learning (and perhaps all of science) can be viewed as attempting to solve the

problem of induction: making predictions about the future conditioned on the past.

Prior Inference Prediction

Data

Figure 2.1: We can view induction as the problem of turning what we know into a prediction

about something we don’t know. What assumptions are required for this to be possible?

Throughout the centuries, there have been a variety of views of the problem of induction:

• Laplace: If the sun rises for 1000 straight days, we should conclude that it has a high

chance of rising on the 1001st day.

• Hume (responding to the above): If a chicken has been fed for 1000 days, should

it conclude it won’t become dinner tomorrow?

In this course, we will take the no-regret view (which grew out of the late 20th century):

we will make no assumptions about how well the past predicts the future and attempt to

do as well anyone could hope to. Note the contrast between this and the statistical view

in standard machine learning, where we assume we will be tested on the same distribution

our training data was drawn from. As we will explore later in the course, one of the key

challenges of interactive learning is being able to predict accurately even under distribution

shift, and the no-regret view will give us a rigorous theoretical foundation for doing so.
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2.2 Prediction with Expert Advice

For this lecture, we will focus primarily on the setting of prediction with expert advice.

Specifically, consider predicting a sequence of binary labels for T rounds, i.e. pt ∈ {0, 1}.
We will assume access to a set of experts E with |E| = N to help us with this task, e.g.:

• e0: always predicts 0

• e1: always predicts 1

• e2: predict what happened at the last round

• e3 predicts 0, 1, 0, 1, . . .

We will assume there is some ground truth sequence of labels y = (y1, . . . , yT ) that is not

necessarily chosen in advance (i.e. it can be chosen adversarially in response to what our

algorithm predicts). We will judge algorithms based on the sum of per-round losses, where

ℓt(pt, yt) = 1[pt ̸= yt]. (2.1)

2.2.1 Regret

Without any assumptions, this problem is quite hard. We will instead attempt to compete

with the best fixed expert in hindsight. Specifically, we define regret as follows:

Definition 1 ((Static) Regret)

Regret(T ) =
T∑
t

ℓt(pt)− ℓt(e
⋆
t ) = min

e∈E

T∑
t

ℓt(pt)− ℓt(et). (2.2)

We say an algorithm achieves no-regret if it drives the time-averaged regret to zero, i.e. if

lim
T→∞

Regret(T )

T
→ 0. (2.3)

This may still seem like a lot to ask for (we haven’t made any assumptions on how the yt’s

are picked!). However, as we will spend the next few lectures exploring, there are a plethora

of algorithms that satisfy the no-regret property, some of which you are probably already

familiar with (e.g. gradient descent).

2.2.2 Follow-The-Leader (FTL)

We will first present what might be the most approach to online learning and then argue

why it doesn’t quite achieve no-regret. Let us define follow-the leader as the algorithm that
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picks the best expert in hindsight, i.e.

Definition 2 (Follow-The-Leader (FTL)) Follow-The-Leader selects

pt = arg min
e∈E

t−1∑
τ

ℓt(e). (2.4)

For a moment, let us set E = {e0, e1} and tie-break in favor of e0. Let us run this algorithm

against an unforgiving world:

e0 Correct e1 Correct pt yt
0 0 0 1

0 1 1 0

1 1 0 1

Figure 2.2: If an adversary were to choose yt in a way to cause us maximal pain, they could

cause us to suffer linear regret (i.e. be wrong at every timestep even though no individual

expert is).

As we will discuss in future lectures, the core issue with FTL is that it is unstable – it switches

its predictions too easily, which makes it possible for an adversary to take advantage of it.

2.2.3 Halving Algorithm

For simplicity, we’re now going to assume there is a perfect expert, i.e. ∃e⋆ ∈ E s.t.∑T
t ℓt(e

⋆
t ) = 0. Let’s now try a smarter approach:

Definition 3 (Halving Algorithm) The Halving Algorithm maintains a set of experts Et
at each round. E0 = E. If an expert ever makes a mistake, it is removed from the set. At

each round, pt is set to the majority vote across Et.

Observe that the total number of mistakes (i.e. total regret) the above algorithm can suffer

is log2(N). This is because if we ever make a mistake, we eliminate half the experts in the

last round’s Et and we can only do this process log2(N) times. This is sometimes referred to

as a mistake bound. Observe that this strategy is effectively weighting an expert by zero if

they ever make a mistake.

5



2.2.4 Deterministic Weighted Majority

If we want to handle the case where no expert may be perfect, we need to adopt a less

aggressive weighting scheme:

Definition 4 (Deterministic Weighted Majority (DWM)) DWM maintains a weight

wi for each e ∈ E. It predicts

pt = 1

 ∑
i:ei(t)=1

wt
i ≥

∑
i:ei(t)=0

wt
i

 (2.5)

(i.e. takes a weighted majority vote). Whenever an expert is wrong, it sets wt+1
i = 0.5wt

i.

We remark that this recovers the halving algorithm if we change the 0.5 to 0 and a standard

majority vote if we instead change to 1.

We now prove a regret bound for this algorithm:

Lemma 1 (DWM Regret Bound) Let m denote the number of mistakes DWM makes

and m⋆ denote the number of mistakes the best expert makes. Then, we have

m ≤ log2

(
4

3

)
(m⋆ + log2(N)). (2.6)

Proof: Observe that for DWM to make a mistake, half of the experts (in terms of weight)

need to be wrong and after such a mistake, this half looses half of their weight. This means

that every time the algorithm makes a mistake, the full set of experts loose at least 1
4

of their

total weight W . This directly implies that

N

(
3

4

)m

≥ W ≥
(

1

2

)m⋆

. (2.7)

Re-arranging terms gives the regret bound.

We remark that the above regret bound is tight via a variant of the switching construction

from 2.2.2.

Unfortunately, log2

(
4
3

)
≈ 2.41 > 1, so the above algorithm doesn’t quite achieve no-regret.

2.2.5 Randomized Weighted Majority

To actually achieve no-regret, we will now switch to predicting a distribution over experts,

and outputting what an expert sampled from that distribution said. While it might not be
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immediately obvious why this is a good idea, in later lectures where we discuss game solving,

the reasoning behind this shift will become more transparent.

Definition 5 (Randomized Weighted Majority (RWM)) RWM initializes all weights

to 1, i.e. w0
i = 1. Define distribution pt(i) = wt(i)/

∑N
j wt(j). RWM samples from this

distribution and predicts what the sampled expert predicts. If an expert is wrong, it sets

wt+1
i ← β · wt

i.

We won’t prove this in this lecture, but we can bound the expected regret as

E[m] ≤ m⋆ ln(1/β) + lnN

β
. (2.8)

For an appropriate choice of β, this algorithm will achieve no-regret. Observe that because

we’re now shelling out to an expert, we no longer need to restrict ourselves to the binary

prediction setting.

2.2.6 Generalized Weighted Majority

For our final algorithm of this series, we will study Generalized Weighted Majority, for which

we will assume ℓt ∈ [0, 1]:

Definition 6 (Generalized Weighted Majority (GWM)) GWM is identical to RWM

but it sets

wt+1
i ← wy

i · exp(−εℓt(ei)), (2.9)

where ϵ can be thought of as a kind of learning rate.

Again, without proof, we will state that

E[Regret(T )] ≤ ε

T∑
t

ℓt(e
⋆
t ) +

ln(N)

ε
≤ Tε +

ln(N)

ε
, (2.10)

where the second inequality comes from the scale of the loss. If we take the gradient of the

above w.r.t. ε and set it equal to zero, we can find that the optimal learning rate is O
(

1√
T

)
.

Plugging in this ε⋆ gives us a final regret bound of

E[Regret(T )] ≤ O(
√
T ) + O(

√
T ) ln(N). (2.11)

Because all terms are sub-linear in T , we have proved the above algorithm achieves no-

regret. Huzzah! We remark that without further assumptions, the
√
T and lnN scaling are

unavoidable up to constants.
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2.2.7 Cover’s Universal Portfolio

We now present an example to perhaps temper the excitement the above example may have

evoked in the mind of an avaricious reader. What if, for a moment, we consider each expert

a stock in the stock market, and our problem to invest optimally (i.e. compete with the

best stock in hindsight). Why does the no-regret property not imply one of the preceding

algorithms could do this trivially? Observe that all the no-regret property says is that

1

T

T∑
t

ℓt(pt)− ℓt(e
⋆)→ 0, (2.12)

i.e. for the losses ℓt we actually observed, the regret goes to zero. It does not imply that for

any counter-factual set of losses we could have observed we would be able to drive regret to

zero. The reason this causes issues in stock trading is that if one puts enough money into

a particular stock, they change the value of that stock (i.e. the sequence of pt we choose

influences the set of ℓt we observe). Thus, while the no-regret property implies we do well

conditioned on our choices, it does not guarantee we do as well as any investor could have

done in the market (as they may induce a different set of ℓt with their choices of pt).

2.3 Convexity

We now define two concepts we will use repeatedly throughout the course.

Definition 7 (Convex Set) A set X is convex if, ∀a, b ∈ X and ∀α ∈ [0, 1],

αa + (1− αb) ∈ X . (2.13)

In words, this definition is saying that there is a straight line to every other point in the set

that is contained in the set.

Definition 8 (Convex Function) A function f is convex if, ∀x, y ∈ dom(f) and ∀α ∈
[0, 1],

f(αx + (1− α)y) ≥ αf(x) + (1− α)f(y) (2.14)

Equivalently, a function is convex if its epigraph (the set of points above the function) is a

convex set.
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17-740 Spring 2025

Algorithmic Foundations of Interactive Learning

Lecture 3: Information Theory and Maximum Entropy

Lecturer : Drew Bagnell

Scribe: Zora Wang, Lindia Tjuatja

3.1 Recap: Regret

Recall that the regret of some algorithm is the difference in loss l between the algorithm and

the best expert e⋆ over all timesteps t ∈ [T ]:

Regret(T) =
T∑
t

ℓt(algt)− ℓt(e
⋆) (3.15)

As we saw in the previous lecture, there exist algorithms (such as weighted majority) where

the regret is sub-linear in T . We say an algorithm is no-regret when

Regret(T )

T
→ 0. (3.16)

For example, for weighted majority, Regret(T ) ≤ O(log(N)
√
T ), where N is the number of

experts we are selecting between.

3.2 Application: Linear Classifiers

We now explore how we can apply the idea of learning from expert advice to the standard

machine learning problem of learning a linear classifier. Intuitively, we will partition the

parameter space into a set of “experts”, and attempt to compete with the best of these

experts (i.e., the best classifier).

Suppose we have a linear classifier with parameters θ ∈ Θ ⊂ Rd with some input x ∈ Rd:

fθ(x) =

{
θTx ≥ 0 : Output 1

θTx < 0 : Output − 1
(3.17)
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As mentioned above, one way can frame this problem as learning from expert advice by

partitioning Θ into a set of experts and running, say, multiplicative weights to pick a classifier.

Observe that from the definition of fθ, only the direction and not the scale of θ matters.

Thus, we can set Θ to be the unit sphere in d dimensions without loss of generality. If we split

each of the d dimensions into b points, we get O(bd) experts, roughly speaking. Recalling

that the regret of WM scales logarithmically with N , it immediately follows that we pay

linearly in the dimension, d. While that is nice, note that we need to do an exponential

amount of work per iteration of WM because the number of experts still scales exponentially

in d, making this a rather computationally inefficient approach.

3.3 Convexity

We now explore a few definitions related to convexity.

Definition 9 (Convex Function) A function f is convex if, ∀α1, α2 > 0 s.t. α1 + α2 = 1

and x1, x2 ∈ dom(f), we have:

2∑
i

αif(xi) ≥ f

(
2∑
i

αixi

)
. (3.18)

In words, this definition is saying that the line connecting two points on a convex function

is on or above the function. Note that this also implies that all linear functions are convex –

strong convexity excludes lines. We can generalize this observation via induction: given any

3 points on a convex function (x1, f(x1)), (x2, f(x2)), (x3, f(x3)), we can trace out a triangle

by taking different linear combinations of the weights which lies above the function:
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x

y

f(x) = x2

A(−2, 4)

B(0, 0)

C(2, 4)

Figure 3.3: We can trace out the triangle in red with different linear combinations of points

A,B,C (i.e. α1, α2, α3 ≥ 0 with
∑3

i αi = 1. Convexity means this triangle lies above the

function (other than at the 3 intersecting points).

The more general version of this above observation for an arbitrary number of points is

known as Jensen’s Inequality:

Lemma 2 For a convex function f and probability distribution p ∈ ∆(dom(f)), we have

Ep[f(x)] ≥ f(Ep[f(x)]). (3.19)

In words, the average value of a convex function lies at or above the evaluation of the function

at the average input. 1

3.4 Information Theory

Information theory is a theory of compressing, communicating, and quantifying information,

like a message. We now outline some basic quantities in information theory.

3.4.1 Entropy, Cross-Entropy, and KL-Divergence

Consider a random variable X with sample space {a, b, c, d}. Let’s say P (X = a) = 1
2
,

P (X = b) = 1
4
, P (X = c) = 1

8
, and P (X = d) = 1

8
. Let’s try to encode samples from

1If you forget which way Jensen’s Inequality goes, a convenient heuristic is that it is the reverse of

whatever you need to complete the proof.
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a

0

b

0

c

0

d

1

Figure 3.4: Prefix tree representation of optimal code of P (X).

P (X) in binary. Specifically, our goal will be to design a code (i.e. a mapping from the

sample space to binary strings) to minimize the expected number of bits required to encode

a sample from P (X) is minimized.

Table 3.1 shows an optimal code for X. As one might expect, more probable values of X

have shorter representations. Furthermore, this code is instantaneously decodable, i.e. we

can, by reading the bits in sequence, tell when a character has completed without the need

to insert explicit delimiters. This is why we don’t use, say, 1 as the encoding of any value.

This also means that we can write the code in a tree-structured manner, and is why it is

sometimes referred to as a prefix code. Also observe that we set the length of the encoding

of some member of our alphabet to be log2(
1

P (X=·)) – this value is sometimes refered to as

the information content or surprisal of the outcome.

Table 3.1: Optimal prefix code for P (X)

Value Prob. Code Length

a 1/2 0 1

b 1/4 10 2

c 1/8 110 3

d 1/8 111 3

To calculate the expected number of bits required to encode a sample using this optimal

scheme, we can simply weight the information content of each out come by the probability

of its occurrence. This value is known as (Shannon) entropy :

Definition 10 Given a probability distribution p ∈ ∆(X ), we can define the (Shannon)

12



entropy of p as

H(p) = Ex∼p[− log2(p(x)]. (3.20)

Observe that entropy does not depend on permutations of the alphabet, nor the dimension of

the points in the distribution. The maximum entropy distribution (i.e., the most uncertain)

is the uniform distribution. Thus, for discrete outcome spaces, H(p) ≤ log2(N), where N

is the number of possible outcomes. We visualize the special case of a Bernoulli random

variable below.

Figure 3.5: We plot the entropy of a Bern(p) random variable of as a function of p. Observe

that entropy is maximized at p = 0.5 (i.e., a fair coin) with value log2 2 = 1.

Above, we coded P (X) according to P (X). What if we instead code some Q(X) according

to P (X)? We can write the expected length of our code by changing the distribution we’re

taking the expectation with respect to, a quantity known as cross entropy :

Definition 11 Given distributions P,Q ∈ ∆(X ), we can define the cross entropy from Q to

P as

H(Q||P ) = Ex∼Q[ − log2 P (x)]. (3.21)

Clearly, this is minimized when P = Q, recovering entropy.

The amount of suboptimality incurred by encoding with the wrong probability distribution

(i.e., the difference between entropy and cross-entropy) is known as the KL Divergence:

Definition 12 Given distributions P,Q ∈ ∆(X ), we can define the cross entropy from Q to

P as

DKL(Q||P ) = Ex∼Q

[
log2

Q(x)

P (x)

]
= H(P ||Q)−H(Q). (3.22)
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Intuitively, this is a measure of how many extra bits we need to pay for picking the wrong

encoding scheme (P instead of Q). The KL divergence is minimized to zero only P = Q

(and only when this is true). This is sometimes known as Gibbs’ Inequality:

Lemma 3 Given any distributions P,Q ∈ ∆(X ), DKL(P ||Q) ≥ 0.

Proof: We proceed via Jensen’s:

−DKL(P ||Q) = −
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(3.23)

≤ log

(∑
x∈X

P (x)
Q(x)

P (x)

)
(3.24)

= log

(∑
x∈X

Q(x)

)
= log(1) = 0. (3.25)

Thus, DKL(P ||Q) ≥ 0.

We can view learning a probability distribution as attempting to maximally compress some

set of samples. More formally, we can view maximum likelihood estimation (MLE) as mini-

mizing the KL Divergence from reality to our model. In this sense, MLE is an information-

theoretic algorithm.

3.5 The Principle of Maximum Entropy

We now consider a problem that, while perhaps seeming somewhat abstract at first, will

underlie many of the concepts we will explore in this course: give partial information about

some distribution (e.g. its mean), what is the right choice of distribution to pick out of

all that match the known information? The Principle of Maximum Entropy says to

pick the highest entropy distribution that satisfies the given set of constraints. As we will

discuss more, one justification for MaxEnt is minimax optimality : if an adversary were to

pick another distribution that satisfies the given constraint, we’d suffer the least pain the

worst case by picking the MaxEnt distribution. In this sense, we get a form of robustness.

Example 1: 8-Sided Die. Consider rolling a die with 8 faces. What is the optimal coding

scheme for the outcome?

MaxEnt says to pick the distribution that maximizes entropy subject to the given infor-

mation. Given we have no information, the MaxEnt distribution would be the uniform

distribution, which gives us an expected code length / entropy of 3. We won’t prove this

14



in class but, if an adversary were to view our code and then pick a true distribution that

matched the given information, MaxEnt would prevent us from having a high KL divergence.

Intuitively, we’ll never put 0 probability mass on some outcome, or the adversary could make

us output a code of infinite length by putting any weight on it.

Ok, that was a fairly boring example. Let’s add in some known information. Using f to

denote the number of dots on the top face, Ep[f ] tells us how many dots we should expect,

on average.

Example 2: Biased 8-sided Die. Let’s say we have the same setting as above, but we

now know Ep[f(x)] = 4.5. In other words, the die is biased. The MaxEnt principle says we

should chose

p⋆ = arg max
p∈∆(X )

H(p) (3.26)

s.t. Ep[f(x)] = 4.5, (3.27)

where ∆(X ) is the probability simplex (i.e., the set of probability distributions) over X .

Given ∆(X ) is a convex set, H is a convex function, and expectation / moment constraints

are linear, this is a convex optimization problem (i.e., there is a unique optimal solution with

an efficient algorithm to find it – the best you can hope for in machine learning!). We note

in passing that maximizing entropy is equivalent to minimizing the KL divergence to the

uniform distribution. One can naturally substitute this uniform distribution for a better

informed prior, leading to the principle of minimum cross-entropy (MinRelEnt for short).

We will revisit this point when we discuss RLHF.

We will explore how to solve this problem via forming the Lagrangian next time!
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Algorithmic Foundations of Interactive Learning

Lecture 4: Maximum Entropy & FTRL

Lecturer : Drew Bagnell & Steven Wu

Scribe: Anupam Nayak & Steven Man

4.1 Recap: Entropy maximization under expectation

constraint

We revisit the problem of maximizing entropy under a constraint, as discussed in the last

class. The goal is to determine the probability distribution pi for i ∈ {1, 2, . . . , 6} representing

a biased die. The distribution must satisfy the expectation constraint that the expected value

of the top face is 4.5 while maximizing the entropy. The mathematical formulation involves

finding pi that maximizes the entropy:

Maximize: H(p) = −
6∑

i=1

pi log pi,

Subject to:
6∑

i=1

pi = 1 (normalization constraint),

E[f ] = c (expectation constraint).

Where f(i) = i is the value on the top face. In order to solve the problem we use the method

of Lagrangian multipliers.

L(p, γ, λ) = min
γ,λ

max
p

H(p)− γ

(
6∑

i=1

pi − 1

)
− λ (Ep[f ]− c)

Setting ∂L
∂pi

= −γ − λf(i)− log(pi)− 1 = 0 we obtain

pi =
e−λf(i)

eγ
′ =

e−λf(i)

Z(λ)

where γ
′

= γ + 1 = log
(∑6

i=1 e
−λf(i)

)
= logZ(λ). Now we are left with a variable λ. Note

that setting λ = 0 we get the uniform distribution and setting λ = −∞/∞ we get a distri-

bution that has all the probability mass concentrated at i = 6/1 respectively. The function
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Z(λ) is usually called the partition function and λ is called the temperature. Substituting

pi back into the Lagrangian we obtain the expression

− Ep[−λf(i)− logZ(λ)]− λ (Ep[f ]− c) (4.28)

= Ep[logZ(λ) + λc] (4.29)

Taking the gradient of the above expression wrt λ we obtain

−
∑

fe−λf

Z(λ)
+ c = −Ep[f ] + c (4.30)

This is also called the Max-Ent gradient. The given distribution pi = e−λf(i)

Z(λ)
is a member of

the exponential family because it can be written in the general form p(x|θ) = h(x) exp(η(θ) ·
T (x)− A(θ)), where h(x) = 1, η = −λ, T (i) = f(i), and A(θ) = logZ(λ)[1].

To obtain the value of λ set the Max-Ent gradient to 0 and solve for Ep[f ] = c. One can

also note the fact that the expected value Ep[f ] is a monotonically decreasing function of λ

which allows the use of root finding techniques for efficiently computing λ.

The principle is also widely used in statistical physics. For example, the probability of

finding a molecule at height h in the Earth’s atmosphere is given by p(h) = e−λmgh

Z
, where

λ = 1/kT , m is the mass of the molecule, g is the gravitational acceleration, and Z is the

partition function. The expectation value of the potential energy, E[mgh], is constrained to

a constant C, which reflects equilibrium conditions.

For a 1D ideal gas, the mean velocity is E[v] = 0, assuming a symmetric velocity distribution.

The mean kinetic energy is E[v2] = 2C
m

, where C relates to the temperature or average energy.

The velocity distribution follows the Maxwell-Boltzmann form: p(v) = e−λ 1
2mv2

Z
, derived using

the maximum entropy principle under the constraint of fixed mean energy.

4.2 Online Learning with Expert Advice

4.2.1 Setup

• N experts: i = 1, . . . , N

• For round t = 1, . . . , T :

1. Algorithm chooses pt = (pt1, . . . , p
t
N)

2. Adversary chooses lt = (lt1, . . . , l
t
N) after observing pt
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3. Algorithm incurs loss: ⟨pt, lt⟩ =
∑N

i=1 p
t
il
t
i

(We will sometimes write ℓt(pt) to denote the incurred loss.)

Assumption 4 (Bounded losses) The losses lti are upper bounded for all i ∈ [N ], t ∈ [T ]

Follow-the-Leader (FTL):

A natural choice of algorithm here would be the Follow-the-Leader (FTL) algorithm which

chooses the best performing expert based on losses observed until time t.

pt = arg min
p

t−1∑
τ=1

ℓτ (p).

This strategy effectively reduces the problem to selecting a single expert, which can lead to

poor performance in adversarial setups. Specifically, the adversary can design a sequence of

losses that results in constant regret for the algorithm. Consider the two expert case if the

adversary chooses a sequence of losses [1, 0], [0, 1], [0, 1], [1, 0], [1, 0], [0, 1], [0, 1], [1, 0], [1, 0] · · ·
alternating between the sequences, FTL switch periodically between experts and will incur

a loss that scales linearly in T .

4.2.2 Weighted Majority / Multiplicative Weights

The weighted majority algorithm, also referred to as the multiplicative weights algorithm,

is a framework for decision-making with experts. At the start, the algorithm initializes the

probability distribution p1, typically as a uniform distribution across all experts. Over the

course of rounds t = 1, 2, . . . , the probabilities are updated iteratively using the rule:

pt+1
i ∝ pti(1− ηlti),

where η > 0 is a learning rate, and lti denotes the loss incurred by expert i during round

t. This rule reduces the weight of experts that perform poorly while maintaining higher

weights for better-performing ones. Recall that the halving algorithm discussed in lecture 2

is a special case of this algorithm under the assumption that there exists a perfect expert. Any

expert that incurs a loss has its weight multiplied by 0 at each time step. pt+1
i ∝ pti(1− ηlti),

can be seen as a first-order Taylor series approximation of the standard exponential weighting

update rule:

pt+1
i ∝ pti exp(−ηlti).

To address the issue of linear regret in FTL, we introduce another algorithm ”Follow the

Regularized Leader” method. This approach incorporates entropy regularization into the

objective as a result of which we get a multiplicative weights update, which discourages
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overly confident (highly skewed) distributions and promotes diversity. The updated objective

function becomes:

pt = arg min
p

t−1∑
τ=1

⟨p, lτ ⟩ − 1

η
H(p),

where H(p) = −
∑

i pi log pi is the entropy term. This regularization ensures that the

algorithm maintains a spread across multiple experts, mitigating the effects of adversarial

losses. Consequently, the final update rule for the weights is given by: pti ∝ exp
(
−η
∑t−1

τ=1 l
τ
i

)
.

This formulation balances exploration (assigning nonzero probability to all experts) and

exploitation (favoring experts with lower cumulative losses), achieving robustness and low

regret across rounds. The optimization oracle is defined as:

O(ℓ1:t) = arg min
p

t∑
τ=1

ℓτ (p),

where ℓτ (p) represents the loss function at time τ for a decision vector p.

4.2.3 Analysis

To analyze the Follow-The-Regularized-Leader (FTRL) algorithm, we first introduce an

auxiliary algorithm called Be-The-Leader (BTL). We begin by demonstrating that the cu-

mulative loss incurred by the best expert in hindsight is lower-bounded by the loss of the

Be-The-Leader algorithm in lemma 5. Next, we incorporate entropy regularization, denoted

as l0, which represents the loss incurred by the algorithm at time step 0. We define BTL in

relation to this newly introduced cumulative loss. Finally, we establish an upper bound on

the difference between the losses incurred by FTRL and BTL, thereby completing the proof.

Under the Be-The-Leader (BTL) algorithm, at each time step t, we determine the probability

vector pt by selecting the vector that minimizes the cumulative loss observed up to and

including time step t.

pt = O(ℓ1:t)

However, it is important to note that this approach is not a practical algorithm, as it relies

on prior knowledge of the loss that will be incurred at time t.

The following lemma is a general result for BTL, which holds beyond linear functions.

Lemma 5 (Be the Leader) For any sequence of loss functions ℓ1, . . . , ℓT :

T∑
t=1

ℓt(O(ℓ1:t))︸ ︷︷ ︸
Be the leader

≤
T∑
t=1

ℓt(O(ℓ1:T ))︸ ︷︷ ︸
Loss of the best expert in hindsight

.
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Here, O(ℓ1:t) corresponds to the decisions made incrementally up to time t, while O(ℓ1:T )

represents the best expert in hindsight, based on all cumulative losses.

Now we will pretend we have another loss ℓ0 at step zero, defined as ℓ0 = − 1
η
H(p), where

H(p) denotes the entropy of the probability distribution p. Let l(p) denote the expected loss

incurred while using the distribution p. Using lemma 5,the cumulative regret is bounded as

follows:

T∑
t=0

(
ℓt(pt)− ℓt(p∗)

)
≤

T∑
t=0

ℓt(pt)− ℓt(O(ℓ0:t))

=
T∑
t=0

ℓt(pt)− ℓt(pt+1)

where O(ℓ0:t) refers to the leader with entropy regularization. Now, incorporating the loss

at step zero:

Regret(p1:T ) + ℓ0(p0)− ℓ0(p∗) ≤ ℓ0(p0)− ℓ0(p1) +
T∑
t=1

ℓt(pt)− ℓt(pt+1).

Thus, the regret becomes:

Regret(p1:T ) ≤ ℓ0(p∗)− ℓ0(p1)︸ ︷︷ ︸
≤ log(N)

η

+
T∑
t=1

ℓt(pt)− ℓt(pt+1)︸ ︷︷ ︸
Stability term

. (4.31)

Lemma 6 (Stability)

T∑
t=1

ℓt(pt)− ℓt(pt+1) ≤ 2η
T∑
t=1

ℓt(pt) ≤ 2ηT.

Proof: We have

ℓt(pt)− lt(p
t+1) =

〈
lt,pt − pt+1

〉
(4.32)

=
N∑
i=1

lti

(
pti − pti

e−ηlti∑N
j=1 p

t
je

−ηltj

)
(4.33)

≤
N∑
i=1

ltip
t
i

(
1− e−ηlti

)
(4.34)

≤ η
N∑
i=1

ltip
t
i = η⟨lt,pt⟩ ≤ η (4.35)
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Here equation (4.34) follows from the non-negativity of the loss function and equation (4.35)

follows from assumption 4.

By setting η =
√

log(N)
T

in (4.31) and using lemma 6, we achieve a regret bound of:

Regret = O(
√

T log(N)).

This result highlights the efficiency of the algorithm, demonstrating that the regret grows

sublinearly with the number of rounds T , while also scaling logarithmically with the number

of experts N .
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Algorithmic Foundations of Interactive Learning

Lecture 5: Follow the Regularized Leader (cont.)

Lecturer : Steven Wu

Scribe: Lintang S., Alfredo G.

5.1 Introduction

• Today: This is the last lecture for online learning covering up to online convex opti-

mization.

• Later: In future lectures we will see how these theoretical tools can be used to derive

“idealized” algorithm, serving as a gateway to practical approximations.

Recall from last time the Follow-the-leader algorithm, in which the leader is greedily picking

the action and expert that looks the best so far. This however can be unstable as the best

expert/action may frequently change.

The key idea: Follow-the-regularized-leader (FTRL) is “optimization with stability”, where

the stability is induced via strong convexity.

Revisiting the problem setting, we are making decisions alongside N experts for 1 ≤ t ≤ T .

At every round t the learner chooses a probability vector xt = (xt
1, x

t
2, . . . , x

t
n). We say

that xt ∈ ∆(N), or the probability simplex of experts, representing the set of probability

distributions of N experts.

Meanwhile, an adversary reveals lt incurring some loss lt(x
t) =< xt, lt >, where ∀t, lt =

(lt1, l
t
2, . . . , l

t
n) ∈ [0, 1]N .

5.1.1 Recap on algorithms

Consider the regret function of choosing expert x from time step 1 ≤ t ≤ T .

Regret(x1:T ) =
T∑
t=1

lt(x
t)−min

x∈X

T∑
t=1

lt(x).

As the regret function measures a sum of T difference of losses, we seek to find a learner for
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which regret grows sub-linearly, and as a result,

Regret(x1:T )

T
→ 0.

As we observed last time, there are a handful of algorithms for which we may achieve a

diminishing regret.

1. Multiplicative weights (update method): In this first approach the probability distri-

butions for the experts is chosen proportional to the losses incurred in previous time

steps:

xt
i ∝

t−1∏
τ=1

(1− ηlτi )

2. Exponential weights (Hedge) Following a similar thought process as multiplicative

weights:

xt
i ∝ exp

(
−η

t−1∑
t=τ

lτi

)
We note that this approach is in fact equivalent to FTRL, in particular when finding

the maximum entropy solution of:

xt = arg min
x∈∆(N)

t−1∑
τ=1

lt(x) + R(x).

where R(x) serves as an entropy regularization term:

R(x) =
1

η

N∑
i=1

xi ln

(
1

xi

)
.

Observe 0 ≤ R(x) ≤ ln(N)
η

.

5.2 Analysis of follow-the-regularized-leader (FTRL)

At its core, FTRL is implementing the idea of optimizing with stability.

We begin our analysis by first examining the Be-the-Regularized-Leader (BRL) approach.

In this case, we assume that the initial round at t = 0 is dedicated to optimizing the

regularization term:

l0 = R(x).
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By being the regularized leader, we “see” the loss lt before choosing a new distribution x. In

other words, we use xt+1 for round t. Consequently, by using the next step to optimize the

previous loss, we perform better than any fixed choice of x. This leads to the inequality:

l0(x
1) +

T∑
t=1

lt(x
t+1) ≤ l0(x) +

T∑
t=1

lt(x), ∀x.

Referring to the definition of regret and using the previously derived inequality, we obtain:

Regret =
T∑
t=1

lt(x
t)−

T∑
t=1

lt(x)

≤
T∑
t=1

(
lt(x

t)− lt(x
t+1)

)
+ l0(x)− l0(x

′).

The second term, l0(x)− l0(x
′), is related to how well the sequence xt+1 performs compared

to the fixed benchmark x. Using the assumption from BRL, we note that:

l0(x)− l0(x
′) = R(x)−R(x′) ≤ ln(N)

η
.

For now, we will ignore this term.

Taking a closer look at the first term,
∑T

t=1(lt(x
t)− lt(x

t+1)), we see that this captures the

stability of the updates in the algorithm. We note that if xt and xt+1 are exactly the same,

this difference is zero, and we have achieved a perfectly stable algorithm. If the update rule

of the algorithm is not drastic, this difference remains small. Conversely, if the updates

between adjacent rounds are large, this difference will also be large.

As a consequence, we can use this observation to understand why Follow-the-Leader (FTL)

is unstable. In FTL, rapidly swapping between different experts results in a large difference

between consecutive terms, leading to instability.

5.2.1 Bounding Stability

Consider a lemma that
T∑
t=1

lt(x
t)− lt(x

t+1) ≤ 2ηT

which implies for values up to a factor of eη ≈ (1 + 2η) that

xt
i ≈ xt+1

i
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So, regret for FTRL:

Regret ≤ 2ηT +
ln(N)

η

By optimizing for η we find that the Regret would be minimum when η =
√

ln(N)
2T

. This

means that regret will grown proportional to

Regret ≤ O
(√

T ln(N)
)

5.3 Online convex optimization

Let’s assume for t = 1, . . . , T :

• Learner chooses xt ∈ X and that this is convex.

• Adversary presents loss function lt → lt(x
t), where lt is convex, differentiable, and

Lipschitz continuous.

l ∇l(x)

x

Figure 5.6: Assuming a l is a convex function, we can use gradient at point x

We can revise our FTRL algorithm by substituting the loss lt with the gradient ∇lt(xt) at

xt.

xt = arg min
x∈∆(X )

T−1∑
t=1

⟨∇lt(xt), x⟩+ R(x)

25



5.3.1 Special case: Online Gradient Descent

For a special case of defining R(x) as the Euclidean Norm

R(x) =
1

2η
∥x∥22 , x ∈ Rd

If we optimize w.r.t x

t−1∑
τ=1

∇lt(xt) +
1

η
x = 0

x = −η
t−1∑
τ=1

∇lτ (xτ )

(5.36)

Which can be reformulated as gradient descent step

xt+1 = xt − η∇lt(xt)
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Part II

Game Solving
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Lecture 6: Minimax via No Regret I

Lecturer : Steven Wu

Scribe: Benji Li, Steven Man

6.1 2-Player Zero-Sum Game

We will start with the most basic two-player normal-form zero-sum game. It has the following

elements:

• 2 Players: Row, Col

• Actions: R,C

• Payoff Matrix: M ∈ R|R|·|C|

Mij = Amount of money Row wins from Col, if Row plays i ∈ R and Col plays

j ∈ C

• Who goes first?

1. Row goes first, plays i:

Col plays “best response”: arg min
j

Mij

Row plays: max
i

(min
j

Mij)

2. Col goes first, plays j:

Row plays “best response”: arg min
i

Mij

Col plays: max
i

(min
j

Mij)

A classical example is the infamous “Rock-Paper-Scissors,” which can be described by a

3× 3-payoff matrix below:

M =


R P S

R 0 −1 +1

P +1 0 −1

S −1 +1 0


Now consider a thought experiment where one of the two players has to commit to playing

some action first, and then the other player can choose their action accordingly. In this

case, there is a clear advantage to play second. In the Rock-Paper-Scissor game, this can be
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written as:

max
i

min
j

Mij = −1

min
j

max
i

Mij = +1

To read the expressions above, you can go from left to right. For example, maxi minj means

the row player chooses to play a row indexed by i first, and then the column play gets to

choose a column j later. If both players are optimizing their objective, the resulting payoff

(received by the row player) is then maxi minj Mij.

One could show that everyone wants to go second in any zero-sum game.

Theorem 7 (Everybody Wants to Go Second)

max
i

min
j

Mij ≤ min
j

max
i

Mij

6.2 Randomized Strategies

Now we consider randomized strategies, and see how things can change. Recall that ∆(S)

denotes all probability distributions on a set S.

• Row plays x ∈ ∆(R)

• Col plays y ∈ ∆(C)

• Expected payoff: Ei,j[Mij] =
∑

i,j xiyjMij = x⊺My

Now, let us revisit the Rock-Paper-Scissor game. Suppose Row plays a uniform strategy

x = (1
3
, 1
3
, 1
3
). Then it is easy to see that min

y
x⊺My = 0, which suggests that the column

player has no real advantage for playing second.

Actually, for any normal-form zero-sum game, the second player gains no advantage from

playing second, provided that the first player can randomize their strategy and the second

player does not observe the realization of this randomization.

Theorem 8 (Minimax Theorem - Von Neumann ’28) There exists a value val(M) s.t:

max
x∈∆(R)

min
y∈∆(C)

x⊺My = min
x∈∆(R)

max
y∈∆(C)

x⊺My = val(M)

Proof: To simplify notations, we will write U(x, y) = x⊺My.
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Note that by the “everyone wants to go second” theorem, we have

min
y

max
x

U(x, y) ≥ max
x

min
y

U(x, y)

We will proceed by proof by contradiction. Assume min
y

max
x

U(x, y) = max
x

min
y

U(x, y) + δ,

for some δ > 0. Consider a thought experiment. We will let the two players repeatedly play

the game against each other over T rounds. For each round t: the two players choose a pair

of strategies (xt, yt) via:

• Min player (previously referred to as Col player) plays according to a no-regret algo-

rithm (e.g., FTRL or multiplicative weights), using ℓt(y) = U(xt, y) as loss function;

• Max player best responds:

xt = arg max
x

U(x, yt)

Let Regy =
∑T

t=1 U(xt, yt) − miny

∑T
t=1 U(xt, y). Note that standard algorithms achieve

Regy = O(
√
T ). Let x̄ = 1

T

∑T
t=1 x

t denote the average play by the max player.

1. By no regret of min player:

1

T

T∑
t=1

U(xt, yt)− 1

T
Regy ≤

1

T
min
y

T∑
t=1

U(xt, y),

= min
y

U(x̄, y),

≤ max
x

min
y

U(x, y)

2. By best response of max player:

1

T

T∑
t=1

U(xt, yt) =
1

T

T∑
t=1

max
x

U(x, yt)

≥ 1

T

T∑
t=1

min
y

max
x

U(x, y)

= min
y

max
x

U(x, y)

By our earlier assumption, we expect a gap of δ:

min
y

max
x

U = max
x

min
y

U + δ

Combining 1. and 2.:

min
y

max
x

U(x, y) ≤ max
x

min
y

U(x, y) +
Regy

T
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Note that the average regret term
Regy
T

decreases at a rate of 1√
T

. The fact that the average

regret goes to 0 contradicts our assumption.

Definition 13 A pair (x∗, y∗) such thatmin
y

x∗TMy = val(M)

max
x

xTMy∗ = val(M)

is known as a minimax equilibrium.
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7.1 Approximate Equilibria

7.1.1 Recap: Minimax Theorem

In this lecture, we aim to extend our prior discussion of the minimax theorem to consider

approximate equilibria in situations where X and Y are convex sets. To begin, first recall

the minimax theorem:

max
x∈∆(R)

min
y∈∆(C)

xTMy = min
y∈∆(C)

max
x∈∆(R)

xTMy = Val(M) (7.37)

We can naturally extend the two-player games to situations where the actions x and y are

chosen from convex and compact (closed + bounded) sets X and Y . Now, the utility or

payoff can be represented as U(x, y) rather than xTMy. We consider the setting in which

the utility function U is concave in x and convex in y. Under this scenario, the minimax

theorem contines to hold:

max
x∈X

min
y∈Y

U(x, y) = min
y∈Y

max
x∈X

U(x, y) (7.38)

7.1.2 ϵ-Nash Equilibria

We now aim to extend to this to scenarios that are approximate Nash Equilibria, or more

formally, ϵ-Nash Equilibria. We first define ϵ-Nash Equilibria as follows:

ϵ-Nash Equilibrium - A pair of actions, x̂, ŷ is an ϵ Nash Equilibrium if

U(x̂, ŷ)−min
y

U(x̂, y) ≤ ϵ (7.39)

max
x

U(x̂, y)− U(x̂, ŷ) ≤ ϵ (7.40)

A natural way to find an ϵ-Nash Equilibrium is for two players to play a no-regret strategy.

We will formally prove that statement:
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Theorem 9 Suppose two players play No Regret algorithms. That is, let RegX = max
x∈X

∑T
t=1 U(x, yt)−

U(xt, yt), and similarly let RegY = min
y∈Y

∑T
t=1 U(xt, yt) − U(xt, y). Then the strategy x̄ =

1
T

∑T
t=1 x

t and ȳ = 1
T

∑T
t=1 y

t is a RegX+RegY
T

Nash Equilibrium.

Proof:

RegX + RegY

T
(7.41)

=
1

T
(min
y∈Y

T∑
t=1

U(xt, yt)− U(xt, y) + max
x∈X

T∑
t=1

U(x, yt)− U(xt, yt)) (7.42)

=
1

T

T∑
t=1

max
x∈X

U(x, yt)− 1

T

T∑
t=1

min
y

U(xt, y) (7.43)

=
1

T

T∑
t=1

max
x∈X

U(x, yt)− U(x̄, ȳ) + U(x̄, ȳ)− 1

T

T∑
t=1

min
y

U(xt, y) (7.44)

≥ max
x∈X

U(x, ȳ)− U(x̄, ȳ) + U(x̄, ȳ)−min
y

U(x̄, y) (7.45)

The last inequality is from Jensen’s inequality, and this proves that we achieve a Nash

Equilibrium bounded by the sum of the regrets. Therefore, playing No Regret algorithms

can lead to a small ϵ Nash Equilibrium.

7.2 Algorithms

Note that Theorem 9 holds regardless of the specific algorithms the players follow. We

now introduce two types of dynamic strategies that ensure the average play of the players

converges to an ϵ-NE.

7.2.1 No-Regret vs. No-Regret (NRNR) Dynamics

The first type of dynamics is no-regret vs. no-regret (NRNR), where both players follow no-

regret algorithms. A typical example is when both players employ Follow-the-Regularized-

Leader (FTRL).

Max player: xt = arg min
x∈X
−
∑t−1

τ=1 U(x, yτ ) + R(x)

Min player: yt = arg min
y∈Y

∑t−1
τ=1 U(xτ , y) + R(y)
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From the regret bound of FTRL, we know that both RegX ,RegY = O(
√
T ). Consequently,

the average play of both players converges to an approximate Nash equilibrium.

7.2.2 No-Regret vs. Best-Response (NRBR) Dynamics

The second type of dynamics is no-regret vs. best-response (NRBR), where one player

follows a no-regret algorithm while the other plays the best response to the no-regret player’s

strategy. We consider a case where the x-player plays FTRL while the y-player plays the

best response.

Max player: xt = arg min
x∈X
−
∑t−1

τ=1 U(x, yτ ) + R(x)

Min player: yt = arg min
y∈Y

U(xt, y)

From the regret bound of FTRL, we have RegX = O(
√
T ). Since yt always plays the best

response, we have RegY ≤ 0. Therefore, the average play of the players will converge to an

approximate Nash equilibrium.

7.2.3 Revisit Max Entropy

We consider the following maximum entropy problem:

min
p≥0

∑
i

p(i) ln
1

p(i)
:= H(p) (OPT)

s.t.
∑
i

p(i)f(i) = c∑
i

p(i) = 1

(7.46)

To solve the constraint optimization problem, we introduce the Lagrangian dual variables γ

and λ, we write the Lagrangian:

min
γ,λ

max
p≥0
H(p)− γ

(∑
i

p(i)− 1

)
− λ

(∑
i

p(i)f(i)− c

)
(7.47)

Here, γ and λ penalize deviations from the constraints, ensuring that:

∑
i

p(i)− 1 = 0,
∑
i

p(i)f(i) = c. (7.48)
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Now, we can view it as a minimax game, and computing the minimax equilibrium with the

NRBR dynamics introduced above.

U(p, (γ, λ)) := H(p)− γ

(∑
i

p(i)− 1

)
− λ

(∑
i

p(i)f(i)− c

)
(7.49)

- The dual variables γ and λ are updated using no-regret algorithms, specifically online

gradient descent.

- The primal variable p follows a best-response dynamics given by:

pt(i) ∝ exp(−λtf(i)). (7.50)

From Theorem 9, we know that (p, λ, γ) converge to an approximate NE.

Now suppose we have an 0-NE for the minimax game. This ensures that min
γ,λ

U(p, (γ, λ)) =

OPT, which implies that both constraints are exactly satisfied.

7.2.4 Extensive-form games with incomplete information

We begin by introducing extensive-form games (EFGs) with incomplete information.

Figure 7.7 provides an example of an EFG. An EFG is represented as a graph, where blue

nodes indicate that it is player 1’s turn, while red nodes indicate that it is player 2’s turn. In

such games, players may have incomplete information, meaning they might not know their

exact position in the game tree, even if they have perfect recall—that is, they remember

the sequence of actions taken by all players. This uncertainty arises due to the presence of

a fictitious nature player, which determines certain elements of the game. For instance, in

Figure 7.7, nature decides whether the card is a King or an Ace. As a result, player 2 cannot

distinguish between certain nodes when making their move. Consequently, they must play

the same strategy at these nodes, which together form what is known as an information set.

For a more detailed introduction to EFGs, we refer the reader to [2].

There are two common representations for strategies in extensive-form games.

The first representation is sequence-form strategies, which model each player’s strategies as

sequences walking down the tree. Using sequence-form strategies, the strategy space for both

players becomes convex and compact, making game a bilinear problem. This representation

shows that the minimax theorem holds in extensive-form games. A detailed introduction to

sequence-form strategies can be found in [2].

36



Figure 7.7: Example of EFG with imcomplete information

The second representation are behavior strategies, where a player’s strategy is defined as a

probability distribution over actions at each decision point. Under this representation, we

are able to design no regret algorithms for EFG, such as Counterfactual Regret Minimization

(CFR). CFR maintains an independent instance of a no-regret algorithm at each decision

node, enabling efficient learning in extensive-form games. For a detailed discussion of CFR,

we refer the reader to [3].
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Part III

Sequential Decision Making
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8.1 Overview

We will start sequential decision making and reinforcement learning:

1. Elements of Markov Decision Processes (MDP) with a focus on finite horizons

2. Value functions: Bellman Equations/optimality

Note: Bellman is sometimes synonymous with dynamic programming

3. Value/policy iteration

8.2 MDP Notation

Consider the following notation:

• State space S

• Action space A

• Reward function R : S × A→ ∆([0, 1]), or r ∼ R(s, a)

• Transition operator P : S × A→ ∆(S)

• Initial state distribution µ0 ∈ ∆(S)

with initial state s0 ∼ µ0

Fact 10 MDPs have the Markovian (“memorylessness”) property where its future state(s)

are independent of its history.

8.3 Finite Horizon

Remark 11 Discounted and Infinite Horizon problems also exist, but we will focus on prob-

lems with finite horizons in this class.

41



Consider the following notation:

• Horizon H

• Trajectory τ = (s0, a0, r0, s1, ..., sH−1, aH−1, rH−1)

• Policy π

• Objective

J(π) = E

[
H−1∑
h=0

rh|S0, a0:H−1 ∼ π

]
(8.51)

There can be as many as |A||S|H deterministic policies.

• Value function(s)

State-value function

V π
h := E

[
H−1∑
h′=h

rh′ |sh = s, ah:H−1 ∼ π

]
(8.52)

Action-value function

Qπ
h := E

[
H−1∑
h′=h

rh′ |sh = s, ah = a, ah+1:H−1 ∼ π

]
(8.53)

8.3.1 (Non-stationary) Markov Policy

In general, a policy π : H → ∆(A), where H represents all partial history.

Definition 14 A non-stationary Markov Policy compresses all partial history into the

current state and time step. πh denotes a policy defined at time step h.

π : S × [H]→ ∆(A)

8.3.2 Bellman Equations

For any policy π, we can derive the following Bellman equations :

V π
h = E[rh + V π

h+1(sh+1)|sh = s, ah ∼ π] (8.54)

Qπ
h(s, a) = E[rh + Qπ

h+1(sh+1, ah+1)|sh = s, ah = a, ah+1 ∼ π] (8.55)

Remark 12 Considering just the first time step h = 1, π = π0 yields:

J(π) = Es0∼µ0 [V
π(s0)]
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Theorem 13 Define V ∗ = (V ∗
0 , ..., V

∗
H) recursively as

V ∗
H(s) = 0 (8.56)

∀(s, h) : V ∗
h (s) = max

a
Es′∼P (s,a)

[
r(s, a) + V ∗

h+1(s
′)
]

(8.57)

Then, supπ:H→∆(A) J(π) = Es0∼µ[V ∗
0 (s0)]. Now define the policy π∗ := (π∗

0, ..., π
∗
H−1) as

∀(s, h) : π∗
h(s) = arg max

a
{Es′∼P (s,a)[r(s, a) + V ∗

h+1(s
′)]} (8.58)

Because π∗ achieves value V ∗ for all (s, h), it achieves optimality.

The equation (8.57) is called the Bellman optimality equation (for V ). The recursive proce-

dure (going from H to 0) defined by equations (8.56) and (8.57) is called value iteration.

Similarly, one can also derive the Bellman optimality equation and value iteration in terms

of action value functions:

∀(s, a) ∈ S × A Q∗
H(s, a) = 0 (8.59)

∀(s, a, h) ∈ S × A× [H − 1] Q∗
h(s, a) = E

[
r(s, a) + max

a′
Q∗

h+1(s
′, a′)

]
(8.60)

The optimal policy can also be written as

π∗
h(s) = arg max

a
Q∗

h(s, a)

8.3.3 Policy Iteration

Another algorithm for computing the optimal value function and policy is policy iteration.

Start with π(0), and then for each increment of t, we compute Qπ(t−1)
where Qπ(t−1)

H = 0 and

for all (s, a) pairs, Qπ(t−1)

h (s, a) is computed by (8.55). This is the policy evaluation step. It

is followed by the policy improvement step, during which we greedily update the policy as

π
(t)
h (s) := arg max

a
Qπ(t−1)

h (s, a) (8.61)

Remark 14 This algorithm guarantees local improvement—that is, at every time step h

and state s:

∀(s, h) : Ea∼π(t+1)(s)[Q
π(t)
h (s, a)] = max

a∈A
Qπ(t)

h (s, a) ≥ Ea∼π(t) [Qπ(t)

h (s, a)] (8.62)

for all t.

43



Interestingly, by the seminal Performance Difference Lemma, we can ensure global improve-

ment, provided that we can local improvement at every state s. In this context, the lemma

can be stated as follows.

Lemma 15 (Performance Difference Lemma)

J(π(t+1))− J(π(t)) = Eτ∼π(t+1)

[
H−1∑
h=1

E[Qπ(t)

(sh, π
(t+1)
h (sh))]− E[Qπ(t)

(sh, π
(t)
h (sh))]

]
(8.63)

The left-hand side of the equation is the “global improvement” in the total reward objective

and the right-hand side is the sum over the expected local improvement over time steps.
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9.1 Overview

We will cover the basics of imitation learning, an invitation to imitation. Among other things,

we will cover DAgger (Dataset Aggregation) and how it can improve imitation learning (IL)

performance in the presence of covariate shift.

9.2 Imitation Learning (IL)

Imitation learning is when we do not have access to a reward function, and instead aim

to learn from expert demonstrations. One flavor of imitation learning is offline behavioral

cloning, where we try to mimic the actions of the expert directly. In contrast, interactive

imitation learning algorithms (as we discuss in this lecture) instead attempt to match the

outcomes of expert actions / overall expert behavior.

A natural question one might have “how is IL different from most other ML problems?”

• Decisions have consequences: errors pass through a feedback loop and compound

→ distribution shift, test ̸= train distribution. For example, a small steering error in

a self-driving car can cause the vehicle to drift toward the edge of the road. If the

training data only contains examples from driving in the center of the lane, the policy

won’t know how to correct this drift, potentially causing the car to drive off the track

entirely.

• Sequential decisions: Actions and decisions are purposeful and sequential. They

shape future states and returns, building toward long-term goals rather than just re-

sponding to the current state.

• Non-IID data: The sequential nature of decision-making breaks the independent

and identically distributed data assumption required by traditional supervised learning

methods.
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9.2.1 Learning to drive by imitation

Consider an RGB camera image (state s) → policy π(a|s) → distribution over actions a,

where actions represent steering angles. As proposed by [4], we can use behavioral cloning

to learn from expert demonstrations. Given a dataset D = {(si, ai)}Ni=1 of state-action pairs

demonstrated by an expert policy πE, we solve the maximum likelihood problem:

max
π∈Π

∑
ξ∈D

logPπ(ξ) = max
π∈Π

∑
ξE∈D

log

(
H∏
h

π(aEh |sEh )

)
= max

π∈Π

∑
ξE∈D

H∑
h

log π(aEh |sEh ) (9.64)

This objective aims to maximize the probability of taking the same actions as the expert in

the states encountered by the expert and is the standard, supervised learning to imitation.

Now let’s say, at every step h, there is an ϵ probability the policy disagrees with the expert.

Each mistake at time step h can lead the learner to deviate from the expert on all subsequent

steps. This results in compounding errors. After H steps, the resulting gap on J(π) can be

expressed as:

J(π)− J(πE) ≤ ϵ
H∑

h=1

(H − h) = ϵ
H(H − 1)

2
∈ O(H2ϵ) (9.65)

The quadratic dependence on horizon length H tells us that errors compound over time.

So then how do we mitigate this compounding error?

Core idea: use interaction. Intuitively, this is because interaction allows us to see states

from the test distribution at training time, eliminating the covariate shift.

Algorithm 1 : Forward Training. We train a sequence of policies π1, π2, . . . , πH , where πh

is trained to predict the action the expert would have taken at time step h, given that we

followed policies π1, . . . , πh−1 for the first h − 1 steps. So, at h = 1, we perform vanilla

behavioral cloning to learn π1. Then, at h = 2, we roll out π1 and ask the expert what they

would have done, had they been in our situation, collecting a dataset of action labels. We

then train π2 via behavioral cloning on this new, on-policy dataset and repeat till h = H.

Assume that at each step, we make a mistake with probability ϵ and such a mistake can at

most cost us u (we’ll explore what u means in a bit). Then, simply by summing up over

timesteps, we have

J(πforward)− J(πE) ≤
H∑
h

p(mistake) ·max cost = ϵuH (9.66)

The bound is now linear in H rather than quadratic, because each policy πh is trained on the

distribution of states that the learner actually encounters at step h. However, this approach
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requires training H separate policies, which becomes impractical for large H, begging the

question of how we train a stationary policy interactively.

Algorithm 2 : DAgger: dataset aggregation. DAgger [5] performs a similar procedure to

learn a single, stationary policy. Algorithm 1 describes the algorithm.

Algorithm 1 DAgger: Dataset Aggregation

Require: Initial dataset D0 collected from offline data

Train initial policy π1 on D0

for i = 1 to N do

Execute πi in the environment to collect trajectories ξi
Query expert for action labels at all states in ξi
Aggregate action labels into dataset: Di ← Di−1 ∪ action labels

Train new policy πi+1 on aggregated dataset Di via behavioral cloning

end for

return Best of N policies on validation data.

As we’ll prove below, with large enough N , we get:

J(π)− J(πE) ≤ uHϵ. (9.67)

With DAgger we reduce the problem of imitation learning to that of no-regret online learning.

In particular, the “dataset aggregation” procedure is implementing the follow the (regular-

ized) leader algorithm we discussed earlier. The environment is not an adversary per se but

the no-regret framework is still useful because we’re not in the statistical / iid setting.

Analysis. To analyze the performance of DAgger, consider the following “zero-one” loss: 2

LπE
(π, s) = Ea∼π [1(a ̸= πE(s))] . (9.68)

This is the probability that our action doesn’t match the expert’s. We can take the expec-

tation over states generated by πi to get the sequence of loss functions we will feed to our

no-regret online learner (FTRL / dataset aggregation in this case):

ℓi(π) = Es∼ρπ [LπE
(π, s)]. (9.69)

Critically, notice that this expectation is taken over states from the learner’s state distribu-

tion rather than the expert’s – this is what distinguishes this loss from behavioral cloning.

2We’re assuming the expert is deterministic here for simplicity, see [5] for the more general proof.
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We can then express the optimization problem we’re solving at each round of DAgger as

πi+1 = min
π∈Π

i∑
j

ℓj(π). (9.70)

A natural question when reading the above equation might be “why are we optimizing over

the history of past visitation distributions when we care about our current policy’s visitation

distribution?” Observe that if the policy we’re choosing doesn’t change too much from

what we’ve seen in the past, minimizing the above equation will give us good guarantees.

Intuitively, this is what the no-regret property of FT(R)L means. Perhaps the easiest way

to see this is to notice that each new dataset is a vanishing fraction of the overall dataset as

N →∞, which means our learning process should eventually stabilize.

Let’s write out the cumulative loss accumulated by the no-regret online learner:

1

N

N∑
i=1

[li(πi)] =
1

N

N∑
i=1

[li(πi)− li(π
⋆)]︸ ︷︷ ︸

average regret

+
1

N

N∑
i=1

li(π
⋆)︸ ︷︷ ︸

expert loss

, (9.71)

where π⋆ = minπ∈Π
∑N

i ℓi(π). Note: π⋆ need not necessarily be πE if we’re in the misspecified

setting (i.e. πE /∈ Π). If we’re in the realizable setting (i.e. πE ∈ Π), the second term on the

RHS must be 0. We’ll assume this for simplicity for the rest of the note.

Due to the no-regret property of FT(R)L / dataset aggregation, we know that the first term

goes to zero on average. Via the Performance Difference Lemma, we can link the regret of

our online learner to the performance of the learned policy. To do so, we’ll first need to

discuss the concept of recoverability more formally – the u from above.

Recoverability. A key challenge in imitation learning is ensuring that mistakes made by the

learned policy do not cause large deviations in performance from the expert. The notion of

recoverability helps formalize this. Recoverability in this context means that the maximum

cost a single-step deviation from the expert could inflict is bounded. In math,

QπE
h (s, a)−QπE

h (s, πE(s)) ≤ u, ∀(s, a) ∈ S ×A. (9.72)

Consider the following two cases: (1) Flat Terrain: You’re walking on a wide, flat field. If you

take a slightly wrong step, you can easily recover — the cost u is small. (2) Walking Along

a Cliff: Now suppose you’re walking along a narrow mountain ridge. A small misstep could

send you tumbling down the cliff — the cost u is very high. In both cases, ϵ could be the same

(say, you make a mistake 10% of the time). But the overall performance degradation depends

heavily on u. On the flat field, Tϵu might still be small. But on the cliff, even small ϵ leads
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to catastrophic performance — hence, the bound becomes loose unless you can ensure very

low ϵ. This highlights why recoverability matters. If the expert can’t recover from mistakes

(i.e., the environment is unforgiving), even DAgger can’t guarantee good performance unless

the learner gets very accurate.

Completing the Proof. Assume that the expected 0-1 classification loss (probability of

disagreement with expert) at each time step is bounded by ϵ. This corresponds to the average

regret is bounded by ϵ in the realizable setting. If the average regret is bounded by ϵ, there

must exist some i ∈ [N ] that has relative loss bounded by ϵ. Furthermore, assume that the

recoverability condition 9.72 holds for some constant u. Then, the performance gap between

the learner and the expert can be bounded as

J(π)− J(πe) ≤ Hϵu. (9.73)

The PDL tells us that for any policy π,

J(π)− J(πE) =
H∑
h

Esh∼π[QπE
h (sh, π(sh))−QπE

h (sh, πE(sh))]. (9.74)

By Hölder’s inequality, each term in the sum is bounded by ϵu for some i ∈ [N ], giving us:

min
i∈N

J(πi)− J(πE) ≤
H∑
h

ϵu = Hϵu. (9.75)

QED!
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Notations In Drew’s lectures, we typically think about costs instead of rewards,3 and use

T to denote horizon instead of H.

10.1 Approximate Dynamic Programming

Depending on the level of knowledge about the environment we have access to (transition

dynamics, reward function, etc), as well as the amount of privilege we have in our experi-

mental setup (such as the ability to reset to a previous state), we can use different models

to sample and learn from our environment.

The following list includes different types of access models in RL.

1. Full probabilistic description of the environment: In this model, the algorithm is given

full description of {p(s′ | s, a), T, c(s, a)}. In a tabular MDP (with a moderate num-

ber of states and actions), we show in a prior lecture that value iteration provides a

straightforward way to learn the optimal value functions, given the full probabilistic

description of the environment.

2. Deterministic Simulative Model: In its simplest form, a deterministic simulative model

provides a function that maps (x, a)→ x′ deterministically. More generally, even when

the underlying dynamics are stochastic, we may still have access to a fixed random seed

within a computer program. This allows us to perfectly recreate trajectories, including

all randomness that occurred. Such access is common in computer simulations, where

reproducibility is desired.

3. Generative models: In this model, we have programmatic access to state transitions,

meaning we can place the system in any desired state and observe its evolution. This

enables flexible exploration and controlled experimentation, making it a powerful tool

for understanding and optimizing decision processes.

4. Reset models: In this model, we can execute a policy or simulate rollouts at any time,

3However, he may also switch midway in the lecture.
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with the ability to reset the system to a known state or a predefined distribution

over states. This feature makes it particularly useful in controlled settings, such as

robotics experiments, where a robot can be repeatedly reset to stable configurations

for consistent evaluation and testing.

5. Single Trace: This model is the most challenging, where actions are irreversible, and

past states cannot be revisited. The trace model captures this fundamental con-

straint—the inability to ”reset” in real-world decision-making.

10.2 Approximating Value and Q Iteration

In this lecture, we will assume costs are deterministic to simplify notations. Recall the

Bellman optimality equations and the Bellman equations in terms of action value functions.

Q∗(s, a, t) = c(s, a) + Ep(s′|s,a)[min
a′

Q∗(s′, a′, t + 1)]

Q∗(s, a, t) = c(s, a) + Total future value of acting optimally

Qπ(s, a, t) = c(s, a) + Total future value of following policy π

Qπ(s, a, t) = c(s, a) + Ep(s′|s,a)[Q
π(s, π(a, t + 1), t + 1)]

Note that one could derive Bellman equations in terms of state value functions as well. There

are some pros and cons.

Pros of Action Value Functions Computing the optimal policy from Q∗ is simpler than

extracting it from V ∗. With Q∗, we can obtain the optimal action using a straightforward

arg max, without needing to evaluate expectations or rely on a transition model. Once we

have Q∗, we don’t need a transition model at all to determine the optimal policy.

Cons of Action Value Functions Action-value functions require more memory than

state-value functions. While a value function only needs to store a value for each state

(|States|), an action-value function must store values for every state-action pair (|States| ×
|Actions|), leading to a significantly larger space requirement.

We will depart from the tabular setting in earlier lectures, where we can afford to enumerate

all state-action pairs. Instead, we will introduce approximations to algorithms like value

iteration and policy iteration. The first algorithm is Fitted Q-Iteration, an approximate

dynamic programming algorithm that learns approximate action-value functions from data.
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Algorithm 2 Fitted Q-Iteration

Require: Dataset {(si, ai, ci, s′i)}Ni=1, horizon T

1: Initialize: Q(s, a, T )← 0, for all s ∈ S, a ∈ A
2: for t ∈ [T − 1, T − 2, . . . , 0] do

3: Dt ← ∅
4: for i = 1, . . . , N do

5: input← (si, ai)

6: target← ci + min
a′

Q
(
s′, a′, t + 1

)
7: Dt ← Dt ∪ {(input, target)}
8: end for

9: Q(·, ·, t)← Regression(Dt)

10: end for

11: return Q

Challenges with Fitted Q-Iteration In class, we went through some interesting toy

examples presented in [6], in which Fitted Q-Iteration fails even in settings where the true

value function lives in the function class we perform regression over. Fitted Q-Iteration and

its counterpart, Fitted Value Iteration suffer from bootstrapping issues and sometimes fail

to converge. These methods approximate the value function inductively, propagating and

even amplifying errors, leading the algorithm to favor suboptimal actions.

The core issue lies in the minimization step when generating target values. This step can

push the policy toward states where the approximate value function underestimates the true

value, making them appear deceptively attractive. This bias is especially severe in sparsely

sampled regions of the state space, where poor generalization may result in policies favoring

undesirable states. From a learning theory perspective, this violates the i.i.d. assumption on

training and test samples.
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10.3 Approximate Policy Iteration

One major problem encountered when approximating the optimal Q-function is that of

overestimation, which tends to amplify errors during the update process. In addition, there

is the issue of covariate shift. As the algorithm updates its policy based on the approximated

Q-function, the distribution of state-action pairs encountered during training shifts away

from the one initially used to learn the approximation. Consequently, when the improved

policy is deployed, it may encounter states that were underrepresented (or even absent) in

the training data. This mismatch between the training and deployment distributions further

exacerbates the error propagation and amplification issues.

A common remedy to mitigate these issues is to shift from using the optimal Q⋆ directly,

to instead employing a policy-dependent Q-function, denoted as Qπ. This leads naturally

to the use of policy iteration rather than direct optimization of Q⋆. Here, there are two

fundamental steps: policy evaluation and policy improvement.

10.3.1 Policy Evaluation

The algorithm is shown in Algorithm 3. Instead of Q⋆, we are trying to estimate Qπ.

Algorithm 3 Policy Evaluation

Require: Dataset {(si, ai, ci, s′i)}Ni=1, horizon T , discount factor γ

1: Initialize: Q(s, a, T )← 0, for all s ∈ S, a ∈ A
2: for t = T − 1, T − 2, . . . , 0 do

3: Dt ← ∅
4: for i = 1, . . . , N do

5: input← (si, ai)

6: target← ci + γ Qπ
(
s′i, π(s′i, t + 1), t + 1

)
7: Dt ← Dt ∪ {(input, target)}
8: end for

9: Q(·, ·, t)← Regression(Dt)

10: end for

11: return Q
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10.3.2 Policy Improvement

When using an approximated Qπ(s, a, t) function to derive a policy, a straightforward ap-

proach is to select the action that maximizes the estimated value:

πproposed(s, t) = argmaxaQ
π(s, a, t) (10.76)

However, this direct maximization can still suffer from the same issues mentioned earlier

(e.g., overestimation or instability due to covariate shift). To ensure a more stable update,

we can interpolate between the current policy and the proposed policy. This approach is

known as conservative policy iteration. The updated policy is given by:

π′(s, t) = (1− α)π(s, t) + απproposed(s, t), (10.77)

where α ∈ (0, 1] is a step-size parameter that controls the degree of change in the policy at

each iteration.

10.4 Policy Search by Dynamic Programming

The previous algorithms discussed (Fitted Q-iteration and Conservative P.I.) rely on Bellman

back-up and approximation of the action value functions. Unlike value-based methods that

derive policies from value estimates, policy search by dynamic programming (PSDP) directly

optimizes the policy itself by going backward in time. The intuition is that if we have already

obtained the optimal (non-stationary) policies from time step (t + 1) and onward, then the

optimization problem at time step t becomes much simpler: we can simply choose the action

that maximize the total reward given that we have committed to following the policies

{πt+1, . . . πT−1} for later steps. By unrolling the policy at every step until termination,

we could then avoid the issues of overestimation and compounding errors suffered by the

previous algorithms. As we deploy the policy at every time step until termination, we incur

a time complexity of O(T 2).

PSDP achieves the following performance bound.

Value Function Bound

Vπ(s0) ≥ Vπref
(s0)−

T−1∑
t=0

ϵ

∥∥∥∥∂πt
ref

µt

∥∥∥∥
∞

where ∂πt
ref (t), µ(t) denote the state distributions induced by the policies π, πref at time

step h, respectively, and ϵ relates to regression loss. We will give the analysis using the

performance difference lemma in the next lecture.
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Algorithm 4 Policy Search by Dynamic Programming

1: Initialize: Q(s, a, T )← 0 for all s ∈ S, a ∈ A
2: for t = T − 1, . . . , 0 do

3: Dt ← ∅
4: for each state si ∈ S do

5: for each action aj ∈ A do

6: Compute target as the sum of future rewards:

target = sum of future rewards executing πt, πt+1, . . . , πT

7: Dt ← Dt ∪ {(si, aj, targetij)}
8: end for

9: end for

10: Q̂t ← Regress(Dt)

11: Update policy: πt = arg maxa Q̂t(s, a)

12: end for

13: return Q
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Figure 11.8: A visualization of the Performance Difference Lemma

11.1 Recap: PDL and PSDP

We first provide some more intuition for the performance difference lemma (PDL), which

bounds the difference between J(πref) and J(π). To simplify our reasoning, we will assume

that both policies and transitions are deterministic. As shown in Figure 11.8, the reference

policy πrefs will then visit a sequence of states s0, s1 . . . sH−1.

Suppose we are at time step h and at the expert’s state Sh. We can compare two trajectories:

1. Taking action πref(Sh) and then following π for the remaining steps.

2. Following π starting at this step and all future steps.

The difference in their values can be written as:

δh = Qπ
h(Sh, πref(Sh))−Qπ

h(Sh, π(Sh))

Now we do this comparison at state s0, then δ0 measures the value gap between the top

two trajectories in Figure 11.8. Similarly, δ1 measures the value gap between the second

and third trajectories on top. Observe that the gap we are interested in J(πref) − J(π) is

precisely the value gap between the top trajectory (fully in blue) and bottom trajectory
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(fully in yellow). By telescoping, we can write

J(πref)− J(π) =
∑
h

δh

This is precisely the deterministic version of PDL.

Now with this intuition and picture of PDL in mind, we can also gain an intuitive under-

standing of the policy search by dynamic programming (PSDP) algorithm. The algorithm

operates on the assumption that we are given a baseline distribution µh at every step h.

PSDP essentially ensures the quantity δh is small over the distribution µh of state sh. PSDP

achieves this via backward induction: at every step h, it optimizes the policy πh over the

state distribution µh given the learned policies πh+1, . . . , πH−1 at later steps. (Note that this

then becomes a one-step decision-making problem, or equivalently a classification problem.)

Concretely, it first computes the action value for each action a at each sampled state sh ∼ µh:

Qπ
h(sh, a) = r(sh, a) + Es′∼P (·|sh,a)[V

π
h+1(s

′)]

where V π
h+1(s

′) is the estimated value function at the next time step. Then, PSDP updates

πh to select action a that maximizes the estimated Qπ
h(sh, a).

Suppose the algorithm achieves ϵ error for each step over the distribution µh–that is,

Esh∼µh
[Qπ(sh, π(sh))] ≥ max

π′
Esh∼µh

[Qπ(sh, π
′(sh))]− ϵ

By change of measure from the baseline distribution to the state distribution visited by the

reference policy, we have

Esh∼d
πref
h

[Qπ(sh, π(sh))] ≥ max
π′

Esh∼d
πref
h

[Qπ(sh, π
′(sh))]− ϵ

∥∥∥∥dπref

h

µh

∥∥∥∥
∞

By PDL, we can bound the performance difference as

J(πref)− J(π) ≤
∑
h

ϵ

∥∥∥∥dπref

h

µh

∥∥∥∥
∞

11.2 Policy Gradients

Another paradigm for reinforcement learning is to directly optimize the policy, known as

Policy Gradients. In this approach, we parameterize the policy as

πθ(a | s) = π(a | s; θ),
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where θ denotes the policy parameters.

A trajectory (or episode) is defined as:

τ = (s0, a0, s1, a1, . . . , sH−1, aH−1),

and the performance objective is given by:

J(πθ) = Eτ∼πθ

[
H−1∑
h=0

rh

]
= Eτ∼πθ

[R(τ)] ,

where R(τ) denotes the return of trajectory τ .

11.2.1 High-level Idea

The fundamental idea behind policy gradient methods is to update the policy parameters

using gradient ascent. In its simplest form, the update rule is:

θt+1 = θt + η∇θJ(πθt),

where η is the learning rate (step-size). In order to apply gradient ascent, it is necessary to

make J(πθ) differentiable with respect to θ.

There are several ways to parameterize the policy:

1. Tabular Case:

When the state and action spaces are small enough to be represented in a table, the

policy can be defined as:

πθ(a | s) =
exp (θs,a)∑
a′ exp (θs,a′)

.

2. Log-Linear Policies:

In this setting, a feature vector ϕs,a is associated with each state-action pair (s, a). The

policy is then defined as:

πθ(a | s) =
exp (⟨θ, ϕs,a⟩)∑
a′ exp (⟨θ, ϕs,a′⟩)

.

3. Neural Softmax Policies:

For more complex scenarios, a neural network can be used to parameterize the policy:

πθ(a | s) =
exp (fθ(s, a))∑
a′ exp (fθ(s, a′))

,

where fθ(s, a) is a function approximated by a neural network.
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11.2.2 Warm Up

Consider a simplified objective function defined as:

J(θ) = Ex∼Pθ
[f(x)] .

Taking the gradient with respect to θ, we have:

∇θJ(θ) = ∇θ

∑
x

Pθ(x)f(x) =
∑
x

∇θPθ(x) f(x).

Using the identity

∇θPθ(x) = Pθ(x)∇θ lnPθ(x),

we obtain:

∇θJ(θ) =
∑
x

Pθ(x)∇θ lnPθ(x) f(x) = Ex∼Pθ
[f(x)∇θ lnPθ(x)] .

11.2.3 Policy Gradient Theorem

Theorem 16 (Policy Gradient Theorem)

(REINFORCE) ∇θJ(πθ) = Eτ∼dπθ

[
∇θ

(
H−1∑
h=0

ln πθ(ah | sh) ·R(τ)

)]
.

Equivalently,

(ADVANTAGE) ∇θJ(πθ) = Eτ∼dπθ

[
∇θ

(
H−1∑
h=0

lnπθ(ah | sh) · Aπθ
h (sh, ah)

)]
where Aπθ

h (sh, ah) = Qπθ
h (sh, ah)− V πθ(sh).

Proof:

∇θJ(πθ) = Eτ [∇θ ln pθ(τ) ·R(τ)]

= Eτ [∇θ(lnµ(s0) + ln πθ(a0 | s1) + · · ·+ ln πθ(aH−1 | sH−1) + ln p(sH | aH−1, sH−1)) ·R(τ)]

= Eτ

[
∇θ

(
H−1∑
h=0

lnπθ(ah | sh) ·R(τ)

)]
.

Interpretation
∑

h ln πθ(ah | sh) is a maximum likelihood estimation (MLE). Therefore,∑
h lnπθ(ah | sh)A(sh, ah) can be viewed as some kind of advantage-weighted MLE.
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12.1 Policy Gradient

Policy Value

Evaluate

Improvement

Policy Gradient:

Direct Optimization

In reinforcement learning, many algorithms, such as policy iteration, revolve around two key

objects: policies and value functions. Policy iteration, for instance, alternates between policy

evaluation and policy improvement. In contrast, policy gradient methods primarily focus

on directly optimizing policy parameters. While we will momentarily step away from the

interplay between value functions and policies, the second part of this lecture will reintroduce

value functions as a tool for variance reduction.

To recep policy gradient methods improve J(πθ) by performing policy gradient ascent update:

θ = θ + η∇θJ(πθ).

A few key points to consider are that J(πθ) is almost always non-convex and must be

estimated using sampled data. Methods that directly optimize the policy are particularly

useful in scenarios where maintaining an explicit value function is unnecessary or impractical.

This is often the case in applications to language models.
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12.2 Notation

The policy parameterized by θ is represented as πθ(a|s) = π(a|s, θ). Pθ represents the distri-

bution induced by πθ over trajectories

τ = (s0, a0, r0, · · · , sH−1, aH−1, rH−1, SH).

The objective function is defined by

J(πθ) = Eτ∼πθ

[
H−1∑
h=0

rh

]
︸ ︷︷ ︸

R(τ)

.

12.3 Policy Gradient Theorem

The REINFORCE algorithm computes the gradient by

(REINFORCE) : ∇θJ(πθ) = Eτ∼Pθ

[
R(τ) ·

(
H−1∑
h=0

∇θ log(π(ah|sh))

)]
.

Observations:

H−1∑
h=0

∇ log πθ(ah|sh) ·

(
H−1∑
h=0

rh

)

=
H−1∑
h=0

∇ log πθ(ah|sh) ·

(
H−1∑
h=0

rh

)

=
H−1∑
h=0

∇ log πθ(ah|sh) ·


h−1∑
h′=0

rh′︸ ︷︷ ︸
A

+
H−1∑
h′=h

rh′︸ ︷︷ ︸
B

 .

The term A is unaffected by ah, and the term b in expectation is Qπθ
h (sh, ah). When we take

the expectation outside, the term A would be zero (as we will show later). Hence, we can

derive the Q-version of REINFORCE as

(Q-Version) : ∇θJ(πθ) = Eτ∼Pθ

[
H−1∑
h=0

Qπθ
h (sh, ah)∇θ log(π(ah|sh))

]
.
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Now if b(s) is unaffected by the action a, we can derive

Ea∼π(·|s) [b(s) · ∇θ log π(a|s)] =
∑
a

b(s) · π(a|s) · 1

π(a|s)
∇θ(π(a|s)

= b(s)
∑
a

∇θπθ(a|s)

= b(s)∇θ

∑
θ

πθ(a|s)

= 0.

The last equation is because
∑

a π(a|s) = 1. Hence, we can subtract a baseline bh(s) = Vh(sh)

that is independent with ah, and get the A-version of REINFORCE as

(A-Version) : ∇θJ(πθ) = Eτ∼Pθ

[
H−1∑
h=0

Aπθ
h (sh, ah)∇θ log(π(ah|sh))

]
,

where Aπθ
h (sh, ah) = Qπθ

h (sh, ah)− V πθ
h (sh).

12.4 Estimation of Policy Gradient

In practice, we cannot usually get the exact full gradient. Hence, we need to derive an

estimator of the policy gradient.

12.4.1 Monte-Carlo Estimation

Using Monte-Carlo estimation, we first roll out N trajectories

{τi = (s
(i)
0 , a

(i)
0 , r

(i)
0 , · · · , s(i)H−1, a

(i)
H−1, r

(i)
H−1, s

(i)
H )}i∈[N ]

following the policy πθ. Then, the gradient can be estimated by

∇θJ(πθ) ≈
1

N

N∑
i=1

∑
h

∇θ log πθ(a
(i)
h |s

(i)
h ) ·R(τi).

You can also get the Q function by Q̂
(i)
h =

∑H−1
h′=h r

(i)
h′ and estimate the gradient by

∇θJ(πθ) ≈
1

N

N∑
i=1

∑
h

∇θ log πθ(a
(i)
h |s

(i)
h ) · Q̂(i)

h .

However, the Monte-Carlo sampling method often results in a gradient estimate with high

variance. We will now introduce methods that reduce variance by introducing learned value

functions Vϕ as a baseline.
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12.4.2 Actor-Critic Method

Actor / Policy

πθ

Critic / Value

Vϕ(s)

Evaluate

Improvement

We define the actor/policy as πθ, and the critic/value as Vϕ(s). In practice, the actor and

the critic are both modeled by neural networks.

When we have the critic/value function, we can estimate the policy gradient as

∇θJ(θ) ≈
H−1∑
h=0

∇θ log π(ah|sh) ·

rh + Vϕ(sh+1)− Vϕ(sh)︸ ︷︷ ︸
Temporal Difference Error

 ,

where the Temporal Difference (TD) error is an estimate of Aπθ
h (sh, ah).

Note that the TD error is also an estimate of the Bellman error : V (s)−Ea∼π,s′∼P [r(s, a) + γV (s′)].

This motivates an optimization objective for the critic, who tries to minimize the square loss

given by

L(ϕ) = E
[
(rh + Vϕ(sh+1)− Vϕ(sh))2

]
.

The critic will optimize this objective using the semi-gradient method which treats Vϕ(sh+1)

as a constant, ignoring its dependency when computing the gradient.

The full pseudocode is shown in the following algorithm:

Algorithm 5 Actor-Critic Method
1: Input: Learning rate ηϕ, ηθ.

2: for episode = 1, 2, · · · , N do

3: for h = 1, 2, · · · , H − 1 do

4: Critic Update:

5: δh = rh + Vϕ(sh+1)− Vϕ(sh)

6: ϕ← ϕ + ηϕ · δh∇ϕVϕ(sh).

7: Actor Update:

8: θ ← θ + ηθ · δh∇θ log πθ(ah|sh).

9: end for

10: end for
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Suppose we execute the policy πθ to get a trjaectory:

πθ → s0, a0, r0, · · · , r1, · · · , r2, · · · , rH−1, SH .

At each step h ∈ [H − 1], you can receive a new reward rh and get the (empirical) value

function Vϕ(sh), and get the one-step advantage function rh−1 + Vϕ(sh)− Vϕ(sh−1).

One alternative of this one-step advantage function is called the Multi-step advantage

function:

A(n)(sh, ah) = rh + · · ·+ rh+n−1 + Vϕ(sh+n)− Vϕ(sh).

This gives us some form of interpolation between the Monte-Carlo estimation and the TD(0).

12.4.3 Generalized Advantage Estimation

We provide a more generalized advantage estimation Âh(λ) as

Âh(λ) = δh + λδh+1 + · · ·+ λH−1−hδH−1.

When λ = 0, Âh(0) is the TD error, corresponding to the Actor-Critic Method.

When λ = 1, Âh(1) is the Monte-Carlo Estimation Approach.

With λ = 0, the estimate is a one-step TD error—highly biased due to its short-term focus

but with low variance from stable updates. At λ = 1, it becomes a Monte Carlo estimator,

reducing bias by considering full returns but increasing variance from accumulated stochastic

noise. Hence, Âh(λ) is a trade-off between the high-bias estimate TD error and the high-

variance Monte-Carlo estimator.
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13.1 Introduction

This lecture presents three views of how one might arrive at the Natural Policy Gradient

(NPG) algorithm.

• KL Regularization for stability

• Least squares regression

• Soft Policy Iteration (Hedge at every state)

Then we will present “practical” algorithms inspired by NPG

• Trust Region Policy Optimization (TRPO)

• Proximal Policy Optimization (PPO)

13.2 Natural Policy Gradient

Recall that

∇θJ(πθ) = Eτ∼Pθ

[
H−1∑
h=0

Aπθ
h (sh, ah)∇θ log(π(ah | sh))

]
= H · Eh∼U [H−1],sh∼d

πθ
h ,ah∼πθ(sh)

[Aπθ
h (sh, ah)∇θ log πθ(ah | sh)].

Also recall the policy gradient update:

θt+1 ← θt + η∇θJ(πθ).

65



13.2.1 KL Regularization View

The regularization view of the above equation is

θt+1 = arg max
θ
⟨∇θJ(πθt), θ⟩ −

1

2η
∥θ − θt∥2.

Notice that the above is a concave function. We can show that the regression view is

equivalent to the policy gradient by solving this concave maximization problem, i.e. taking

the derivative with respect to θ and setting it equal to zero.

We can explicitly enforce a hard limit on how far the parameters move by adding a constraint,

giving us the constrained optimization view:

max
θ
⟨∇θJ(πθt), θ⟩, s.t. ∥θ − θt∥22 ≤ δ.

Both the regularization view and constrained optimization view are looking at changes in

parameter space. However, it can very well be the case that two sets of very different

parameters lead to near-identical policies.

A more principled approach would instead constrain the differences between policies them-

selves. We can do this by constraining the KL-divergence between the old and new policies,

instead of the ℓ2 norm of their parameters:

max
θ

J(πθ), s.t.
1

H
KL(Pπθt∥Pπθ) ≤ δ,

By decomposing the KL divergence, we can get

1

H
KL(Pπθt∥Pπθ) =

1

H

∑
τ

Pθt(τ) log
Pθt(τ)

Pθ(τ)

=
1

H

∑
τ

Pθt(τ)
H−1∑
h=0

log
πθt(ah | sh)

πθ(ah | sh)

= E(sh,ah)∼d
πθt

[
log

πθt(ah | sh)

πθ(ah | sh)

]
:= ℓ(θ).

How can we approximate ℓ(θ)? We can use a Taylor expansion of ℓ(θ) around θ = θt:

ℓ(θt) = 0

∇θℓ(θ) = 0|θ=θt

∇2
θℓ(θt) = E

[
∇θ log πθt(ah | sh)∇θ log πθt(ah | sh)⊤

]
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The Hessian ∇2
θℓ(θt) is also referred to as the Fisher Information Matrix, denoted as F (θt).

Hence, by the second-order approximation, we can estimate ℓ(θ)

1

H
KL(Pπθt∥Pπθ) ≈ (θ − θt)

⊤F (θt)(θ − θt).

Thus, the update rule of natural policy gradient (NPG) can be written as

θt+1 ← θt + ηF †∇θJ(πθt),

where F † is the Moore-Penrose Inverse.

13.2.2 Regression View

We can also view NPG as solving a weighted least squares regression problem.

Lemma 17 Define

w∗ = arg min
w

E(sh,ah)∼dπθ

Aπθ
h (sh, ah)︸ ︷︷ ︸

label

−w⊤∇θ log πθ(ah | sh)︸ ︷︷ ︸
feature

2 .

Then, F †(θ)∇θJ(πθ) = Hw∗.

Proof. By first order condition:

E
[(
Aπθ

h (sh, ah)− (w∗)⊤∇θ log πθ(ah | sh)
)
∇θ log πθ(ah | sh)

]
= 0

It is equivalent to

E [(Aπθ
h (sh, ah))∇θ log πθ(ah | sh)]︸ ︷︷ ︸

1
H
∇θJ(πθ)

= E [∇θ log πθ(ah | sh)∇θ log πθ(ah | sh)⊺]︸ ︷︷ ︸
Fisher Matrix F (θ)

w∗.

Hence we have F †(θ)∇θJ(πθ) = Hw∗.

The lemma above shows that the NPG update is indeed a regression problem under some

linear transformation.
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Invariance under reparameterization. The regression view of NPG also provides a way

to demonstrate that NPG is invariant under affine reparameterization. An affine reparame-

terization of the policy parameters transforms θ via an invertible affine map:

θ′ = Mθ + b

where M ∈ Rd×d is an invertible matrix, and b ∈ Rd is an arbitrary translation vector. In

other words, the policy can be written as π′(θ′) = π(M−1(θ′ − b)) = π(θ). Suppose we have

θ′t = Mθt + b and πθ′t
= πθt (that is the parameterized policies are the same). By the chain

rule of calculus, we have

∇θ′ log π′
θ′(a | s) |θ′=θ′t

= M−1∇θ log πθ(a | s) |θ=θt .

Since least squares regression is invariant under linear transformations of the feature space,

the transformation ∇θ′ log π′
θ′(a | s) = M−1∇θ log πθ(a | s) does not change the optimal

solution w∗ when properly parameterized. In particular, the transformed solution becomes:

w′∗
t = Mw∗

t

In other words, after an NPG update, we continue to have θ′t+1 = Mθt+1 +b. This invariance

property is also called covariant.

As an exercise, you can show that policy gradient does not enjoy this invariance property.

13.2.3 Soft Policy Iteration

Assume the softmax policy parameterization in the tabular MDP setting: πθ(ah | sh) ∝
exp(θsh,ah). Then, we have the following lemma showing the relationship between NPG and

SPI.

Lemma 18 The update rule θt+1 ← θt + ηHAt is equivalent to

πt+1(ah | sh) ∝ πt(ah | sh) · exp(ηHAt
h(sh, ah)).

Thus, we can view NPG as running a copy of the hedge algorithm at every state sh.

To show this result, we can look at the regression view of the NPG algorithm and find out

that the advantage function is a solution to the least squares regression problem.
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13.3 “Practical” Algorithms

13.3.1 Trust Region Policy Optimization (TRPO)

TRPO is the precursor to PPO, motivated by the NPG update. TRPO solves a constrained

optimization problem that explicitly bounds the KL divergence between the updated policy

and the current policy:

max
θ

E(s,a)∼d
πθt

[
πθ(a|s)
πθt(a|s)

Aπθt (s, a)

]
s.t. DKL(πθt ||πθ) ≤ δ

The objective function is called surrogate advantage objective, which was also used in conser-

vative policy iteration covered in a previous lecture. One way to make sense of the objective

function is to start with the performance difference lemma:

J(πθ)− J(πθt) = HEs∼dπθ

[∑
a

(πθ(a | s)− πθt(a | s))Qπθt (s, a)

]
To ensure policy improvement, we want the performance difference above to be positive. An

immediate difficulty for optimizing this quantity is that the expectation is over the state

distribution dπθ induced by the new policy πθ. Since TRPO ensures that the KL divergence

between the new and old policies is small, one strategy is to replace the state distribution

by dπθt . This gives us

J(πθ)− J(πθt) = HEs∼d
πθt

[∑
a

(πθ(a | s)− πθt(a | s))Qπθt (s, a)

]

= HEs∼d
πθt ,a∼πθt

(s)

[(
πθ(a | s)− πθt(a | s)

πθt(a | s)

)
Qπθt (s, a)

]
= HEs∼d

πθt ,a∼πθt
(s)

[(
πθ(a | s)
πθt(a | s)

)
Aπθt (s, a)

]
which is exactly the objective function in TRPO (up to a factor of H). Similar to NPG,

TRPO will also approximate the KL constraint with the Fisher information matrix, which

leads to a quadratic constraint

(θ − θt)
⊤F (θt)(θ − θt) ≤ δ

Then TRPO proceeds to solve the quadratically constrained problem by solving the La-

grangian (which we saw in the information theory lecture). Similar to NPG, this step
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requires computing F †∇θJ(πθt), which can be costly due to the computation of a matrix

inverse. TRPO instead solves the associated linear system:

Fx = ∇θJ(πθt)

using the conjugate gradient method, which iteratively finds x without inverting F .

13.3.2 Proximal Policy Optimization (PPO)

PPO is a somewhat “hacky” approximation of TRPO. The motivation is to prevent the policy

from changing too much without doing explicitly KL-constrained optimization. Instead,

PPO introduces clipping :

R̂clip = E(s,a)∼d
πθt

clip

(
πθ(a|s)
πθt(a|s)

)
Aπθt (s, a)︸ ︷︷ ︸

L(θ,s,a)


where clip projects the value into the interval [1− ϵ, 1 + ϵ], and ϵ is a small positive hyper-

parameter (e.g., 0.1 or 0.2).

The PPO objective then becomes:

R̂PPO = E(s,a)∼d
πθt

[
min

{
πθ(a|s)
πθt(a|s)

Aπθt (s, a), clip

(
πθ(a|s)
πθt(a|s)

)
Aπθt (s, a)

}]
We analyze the effect of the min operation separately for positive and negative advantage

values. Let the probability ratio be defined as:

rθ(s, a) =
πθ(a|s)
πθθt

(a|s)
,

Case 1: Positive Advantage (A(s, a) > 0) If the advantage is positive, we prefer to

increase the probability of the chosen action. The objective L(θ, s, a) simplifies to:

A(s, a) min (rθ(s, a), 1 + ε) .

Analyzing the behavior based on the value of rθ:

L(θ, s, a) =

{
rθ(s, a)A(s, a), if rθ(s, a) ≤ 1 + ε

(1 + ε)A(s, a), if rθ(s, a) > 1 + ε

Interpretation:
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• If the probability ratio is within the threshold (≤ 1 + ε), the objective increases pro-

portionally as we increase rθ.

• If rθ surpasses 1+ε, the objective saturates at (1+ε)A(s, a). Thus, there is no incentive

for the policy to further increase this action’s probability.

Case 2: Negative Advantage (A(s, a) < 0) If the advantage is negative, ideally we

want to decrease the probability of the chosen action. The objective is L(θ, s, a) simplifies

to:

A(s, a) max (rθ(s, a), 1− ε) (since A(s, a) < 0 reverses the inequality).

We analyze based on the value of rθ:

L(θ, s, a) =

{
rθ(s, a)A(s, a), if rθ(s, a) ≥ 1− ε

(1− ε)A(s, a), if rθ(s, a) < 1− ε

Interpretation:

• If the probability ratio is within the lower bound (≥ 1− ε), the objective improves as

we reduce rθ, since this makes rθA(s, a) less negative (larger).

• If rθ falls below 1 − ε, the objective hits the floor (1 − ε)A(s, a). Thus, reducing the

probability further yields no additional improvement.

The min operation together with the clip operation ensures stable and conservative updates

by limiting the magnitude of policy changes in each optimization step.
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Model-based RL is a subclass of reinforcement learning where the agent learns a dynamics

model of the environment. This model can be used to simulate future states, calculate

rewards, and optimize action selection accordingly without ever interacting with the actual

environment.

15.1 What’s a “model”?

Recall a Markov Decision Process (MDP) that can be defined as:

M = {S (state space)

A (action space)

r (reward function)

T (transition dynamics)

H (horizon)

ρ0 (initial state distribution)}

The goal of model-based RL is to learn the transition dynamics (T ) of the environment. This

model can be used to evaluate trajectories without interacting with the actual environment.

1. An MDP includes a transition function / dynamics T : S × A → ∆(S), which has

|S|2|A| elements to learn. This is a lot more than learning a policy π : S → ∆(A),

which only has |S||A| elements, increasing the data required.

2. Generative model access to an MDP allows an agent to query the “model” at any

preferred state-action pair to get predictions of the next state (i.e. samples from

the next state distribution). Learning a dynamics model gives us such access to the

underlying MDP we’re trying to solve.

3. Model-based RL (MBRL) is performing RL in an MDP M’ is M but with ground truth

T replaced with learned T’, which is approximated. Alternatively, it could also involve
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test time planning (e.g., model predictive control) for finding actions that optimize an

objective function inside M’ – we will discuss this in detail in a future lecture.

15.2 What makes a good model?

A perfect model would be the one returning predictions exactly the same as the ground truth.

However, in the real-world, learning problems are prone to errors. Since we cannot model

everything accurately, it is better to give more importance to the regions of the state and

action spaces visited by the policy we’re evaluating. To summarize, a “good” model is one

that allows us to accurately evaluate the performance of a policy: a policy looks performant

in a good model if and only if it is performant in the real world. We can make this intuition

more precise via the following lemma, which tells us that if we’ve learned a model that can

accurately predict state transitions everywhere 4, we will achieve the preceding desiderata.

Lemma 19 (Simulation Lemma, Kearns & Singh, 2002) Suppose that for all (s, a) in

state action spaces, the total variation distance between the learned model and the ground

truth is less than ϵ,
∑

s′ |T ′(s′|s, a)− T (s′|s, a)| ≤ ϵ. Then for any policy π : S → A, we
have

|J(π,M)− J(π,M ′)| ≤ H(H − 1)

2
ϵ (15.78)

Proof: If the following inequality holds for all states, then it also holds in expectation

over the initial state distribution, since expectation preserves inequalities. Therefore, in the

proof, we bound the value difference pointwise over states, which allows us to derive a bound

on the performance difference by averaging these pointwise bounds over the initial states:

|V π
h (s,M)− V π

h (s,M ′)| ≤ (H − h)ϵ +
∣∣V π

h+1(s,M)− V π
h+1(s,M

′)
∣∣ (15.79)

We prove Eqn. 15.79 using backwards induction. The following lemmas are used in the proof:

Lemma 20 (Triangle Inequality) |a− b| = |a− c + c− b| ≤ |a− c|+ |c− b|

Lemma 21 (Holder’s Inequality)
∑

x p(x)g(x) =< p, g >≤ ∥p∥1 · ∥g∥∞

Base Case:

h = H ⇒ LHS = 0 ≤ 0 = RHS (15.80)

Inductive Hypothesis: Assume for h + 1, we have:

|V π
h+1(s,M)− V π

h+1(s,M
′)| ≤ (H − h− 1)ϵ. (15.81)

4One can easily modify this proof to add an expectation over any desired state distribution.
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Inductive Step: Expanding the value functions via Bellman equation:

|V π
h (s,M)− V π

h (s,M ′)| =
∣∣Ea∼π(s),s′∼T (s,a)[r(s, a) + V π

h+1(s
′,M)] (15.82)

−Ea∼π(s),s′∼T ′(s,a)[r(s, a) + V π
h+1(s

′,M ′)]
∣∣ (15.83)

Next, we observe that the reward function does not depend on the next states, so the

expectation of r(s, a) in both terms are the same.

=
∣∣Ea∼π(s),s′∼T (s,a)[����r(s, a) + V π

h+1(s
′,M)] (15.84)

−Ea∼π(s),s′∼T ′(s,a)[����r(s, a) + V π
h+1(s

′,M ′)]
∣∣ . (15.85)

For simplicity, we upper bound the expectation with the maximum over actions:

≤ max
a

∣∣∣∣∣∑
s′

T (s′|s, a)V π
h+1(s

′,M)− T ′(s′|s, a)V π
h+1(s

′,M ′)

∣∣∣∣∣ . (15.86)

We now proceed by applying Lemma 20. Let a =
∑

s′ T (s′|s, a)V π
h+1(s

′,M), b =
∑

s′ T
′(s′|s, a)V π

h+1(s
′,M ′),

c =
∑

s′ T
′(s′|s, a)V π

h+1(s
′,M). Then, we have:

≤max
a

∣∣∣∣∣∑
s′

T (s′|s, a)V π
h+1(s

′,M)− T ′(s′|s, a)V π
h+1(s

′,M)

∣∣∣∣∣ (15.87)

+

∣∣∣∣∣∑
s′

T ′(s′|s, a)V π
h+1(s

′,M)− T ′(s′|s, a)V π
h+1(s

′,M ′)

∣∣∣∣∣ (15.88)

(15.89)

Next, we apply Lemma 21. Define p = T (s′|s, a)−T ′(s′|s, a), q = V π
h+1(s

′,M). Then, |p| ≤ ϵ

by assumption, and the maximum value of the value function, |q|, is at most H − h, hence

the first term is upper bounded by ϵ(H−h). By assumption, the 2nd term is upper bounded

by the last step. Intuitively, this is because if we have a bound on the probability of a

difference and the maximum amount we can pay per difference, we can in the worst case pay

the product of those two quantities. Thus:

≤max
a

∣∣∣∣∣∣∣∣∣∣
∑
s′

T (s′|s, a)V π
h+1(s

′,M)− T ′(s′|s, a)V π
h+1(s

′,M)︸ ︷︷ ︸
≤ϵ(H−h)

∣∣∣∣∣∣∣∣∣∣
(15.90)

+

∣∣∣∣∣∣∣∣∣∣
∑
s′

T ′(s′|s, a)V π
h+1(s

′,M)− T ′(s′|s, a)V π
h+1(s

′,M ′)︸ ︷︷ ︸
≤value of the last step

∣∣∣∣∣∣∣∣∣∣
(15.91)
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We can now expand out the recursion over h to complete the proof:

|J(π,M)− J(π,M ′)| ≤
H∑
h

(H − h)ϵ =
H(H − 1)

2
ϵ. (15.92)

15.3 How do we fit a good model?

Prima facie, one might like the model to be accurate on the current policy’s state distribution.

However, just doing this is not enough. Once we learn a model, we also run RL steps that

optimize the policy using this approximated model. When the model is inaccurate, the RL

step might exploit such inaccuracies and lead to poor performance in the real world.

This can work extremely poorly. Similar to approximate policy iteration, and the follow the

leader counter-example, the model might switch back and forth repeatedly, with the RL step

never finding a good policy. We now sketch such an example on a tree-structured MDP.

M⋆ in Figure 15.9 represents the real world. The optimal policy πE is highlighted in green.

Assume the initial policy we start off with goes right twice, as shown by the highlighted

red trajectory in M0 (Figure 15.10). We’ll likely be accurate on states seen in the training

distribution, causing us to correctly predict the green label of 0 for going right twice. How-

ever, we can be arbitrarily bad on states we didn’t train on – for example, we can predict

a reward of 1 for going right and then left, as we do in M0. The optimal policy inside M0

would then exhibit this behavior, effectively exploiting the inaccuracies in the learned model

that happen in OOD states. Then, based on the new policy, we could learn some new M1

(Figure 15.10). Again, we’re correct in-distribution, but could be overly optimistic on the

value we’d receive of going right twice. Observe that the optimal policy in M1 could induce

M0, so we could just oscillate between these two models and their corresponding optimal

policies without learning anything useful. Intuitively, this is because a model trained on a

single round of data can be too optimistic on unseen states.

Instead, we could aggregate all the past datasets we have observed. This is using a no-regret

algorithm over models (specifically, Follow the Regularized) Leader) to deal with the ”best

response” over policies. This is not explicitly game-solving, but the no-regret principle can

help us deal with the distribution shift caused by RL exploiting the model. While Mno−regret

will accurately predict 0 for the two paths it has seen (visualized in Figure 15.11), since it has

never observed any data of optimal policy πE, it could still underestimate the value of going

left twice. Intuitively, without seeing data from the expert, we can be overly pessimistic

about good OOD trajectories. So, while no-regret model fitting guarantees us correct policy
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Figure 15.9: The optimal policy πE goes left twice and recieves reward 1.

Figure 15.10: Since doing RL exploits the model and can cause it to be queried on states

outside of its training distribution, only training on the latest data might lead to a situation

where we oscillate between inaccurate models and suboptimal policies. We use a red highlight

to visualize the policy used to generate the training data and a green leaf node label to denote

we got this reward correct. We use red to denote OOD leaf nodes where we incorrectly predict

the reward value. Observe that the optimal policy in M0 induces M1 and vice-versa.

evaluation (i.e. we correctly predict both policies get zero reward), it doesn’t guarantee we’ll

compute a policy via RL in the model that is anywhere close to the quality of πE

Now say if we have samples from πE is that, how could we use them? Even if we fit our model

perfectly on the expert data, if our policy distribution is different (i.e., taking the right path

instead of left from the top node), our model will still behave poorly on unseen paths. One

way to resolve this tension is to combine expert data with our policy distribution, which is

essentially DAgger for MBRL, with extra expert data to reduce the exploration burden on

the learner. Fitting the model on the hybrid distribution leads to Agnostic SysID:

76



Algorithm 6 No-Regret MBRL

1: Initialize some π0, T̂0

2: for t = 1, ..., T do

3: (1) Roll out πt−1 in T ∗ to collect Dt

4: (2) Fit T̂t on
⋃t

τ=1 Dτ

5: (3) Run RL inside T̂t to compute πt

6: → πt = arg maxπ∈Π J(π,Mt) “best response”

7: end for

Figure 15.11: A data aggregation data method on the other hand will assign the correct

reward values to both the states and not demonstrate an oscillating behavior.

Algorithm 7 Agnostic System Identification (Ross and Bagnell 2012)

1: Initialize some π0, T̂0

2: for t = 1, ..., T do

3: (1) Roll out πt−1 in T ∗ to collect Dt

4: (2) Fit T̂t on (
⋃t

τ=1Dτ )
(
1
2

)
+ 1

2
DE

5: (3) Run RL inside T̂t to compute πt

6: → πt = arg maxπ∈Π J(π,Mt) “best response”

7: end for

Intuitively, we need to be able to accurately predict the consequences of our actions (both good

and bad) to learn a good policy. Fitting the model on the mixture of expert and learner data

helps balance optimism and pessimism without computational complexity. We will further

explore this idea of hybrid RL in the model-free setting during the following guest lecture.

We can provide some more intuition for why this hybrid model-fitting procedure ensures

that learn a model such that policies look good in the model if and only if they are good in
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Figure 15.12: Training Process of Dreamer

the real world via the following three-term decomposition:

J(πE,M)− J(π,M) = (J(πE,M)− J(πE,M
′)) → inaccuracy on πE

+ (J(π,M)− J(π,M ′)) → inaccuracy on π

+ (J(πE,M
′)− J(π,M ′)) → planning error

If the RL solver of our model is perfect, (J(πE,M
′) − J(π,M ′) ≤ 0 and the inner term

will be non-negative. If we also fit the model well on learner and expert state distributions,

(J(πE,M), J(πE,M
′))+((J(π,M)−J(π,M ′)) will also be small via the Simulation Lemma.

Thus, this idea is sometimes affectionately referred to as the double simulation lemma. In

the Agnostic SysID paper, Ross & Bagnell use an upper bound on the Simulation Lemma

to derive loss functions for the no-regret model fitting procedure on hybrid data (off-policy

expert data + on-policy learner data), which boil down to standard MLE on the hybrid data.

15.4 How do we scale this idea?

To address the key challenge that modeling pixels is hard, we can do things in latent space

by using sequential VAEs like Dreamer [7]. The training process of Dreamer is illustrated

as Figure 15.12. First, an encoder maps sensory inputs xt to stochastic representations zt.

Then, a sequence model with recurrent state ht predicts the sequence of these representations

given past actions at−1. The concatenation of ht and zt forms the model state from which

we predict rewards rt and episode continuation flags ct ∈ {0, 1} and reconstruct the inputs

to ensure informative representations:
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Sequence Model ht = fϕ(ht−1, zt−1, at−1)

Encoder zt ∼ qϕ(zt|xt, ht)

Dynamic Prediction ẑt ∼ pϕ(ẑt|ht)

Reward predictor: r̂t ∼ pϕ(r̂t|ht, zt)

Continue predictor: ĉt ∼ pϕ(ĉt|ht, zt)

Decoder x̂t ∼ pϕ(x̂t|zt, ht)

Dynamic Prediction ẑt ∼ pϕ(ẑt|ht)

Question 1: Why we need a decoder?

• Without a decoder, the learned latent representations are at risk of collapsing to trivial

or degenerate solutions—such as constant vectors—since there is no explicit constraint

enforcing the retention of meaningful information from the original observations. In

such a scenario, the latent state may become uninformative. Essentially, the decoder

acts as a grounding mechanism, ensuring that the latent representation remains coupled

with the actual observations.

Question 2: Why do we need alternative objectives beyond a decoder?

• While decoders are commonly used to encourage latent representations to retain input

information, they can be inefficient for decision-making tasks. For example, recon-

structing the entire input image may force the model to encode irrelevant details—such

as leaves blowing in the wind—that have no impact on the task, such as driving. This

leads to representations that are perceptually rich but behaviorally redundant.

• To obtain minimal sufficient representations for reinforcement learning, alternative

objectives are needed. One effective approach is to replace the decoder with an inverse

dynamics model, which predicts the action taken between two latent states [8]. This

encourages the model to retain only information that is influenced by agent behavior,

naturally filtering out task-irrelevant factors, leading to more minimal representations.
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16.1 Introduction

Offline data

Some examples of offline data are YouTube videos and teleoperation data for robotics.

We sample s, a ∼ µ, r = R(s, a) (assume deterministic reward), s′ ∼ P (·|s, a)

Unlike imitation learning, we do not place any guarantee on the quality of the distribution

µ and the samples – they can be meaningfully suboptimal. However, we do see rewards.

Value learning

Notation. We consider finite horizon Markov Decision Process M = {S,A,H,R, P, d0}. We

define a policy π where πh : S 7→ ∆(A) and let dπ denotes the visitation distribution induced

by π at step h. Let V π(s) = E[
∑H−1

τ=0 rτ |π, sh = s] and Qπ
h(s, a) = E[

∑H−1
τ=0 rτ |π, sh = s, ah =

a] be value functions and let Q⋆ and V ⋆ denote the optimal value functions. We will use the

following pieces of notation repeatedly:

Definition 15 Let πQ to be the greedy policy w.r.t. a state-action value function Q.

πQ(s) = arg max
a∈A

Q(s, a) (16.93)

Definition 16 We define the Bellman operator T such that for any f : S × A 7→ R,

T f(s, a) = E[r(s, a)] + Es′∼P (s,a) max
a′

f(s′, a′). (16.94)

Recall that T Q⋆ = Q⋆ – the optimal Q function is a fixed point of the Bellman Operator.

Thus, one way to learn a good Q function is to minimize the Bellman error – the difference

between the two sides of the fixed point condition. More formally,

Definition 17 Bellman Error is defined as f − T f .
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Algorithm 8 Q-Value Iteration

Require: MDP M = {S,A,H,R, P, d0}
Initialize QH(s, a) = 0 for all (s, a) ∈ S × A

for h = H − 1, H − 2, . . . , 0 do

for each (s, a) ∈ S × A do

Qh(s, a)← T Qh−1

end for

end for

Return {Q0, Q1, . . . , QH−1}

Per the above, the Bellman Error of the optimal Q function is Q⋆ − T Q⋆ = 0.

Recall the Q-Value iteration algorithm (Alg. 8). Observe that this algorithm is attempting

to minimize the Bellman Error by iteratively applying the Bellman Operator. Once we have

near optimal Q-value estimates (Q̂ ≃ Q⋆), we can get a near optimal policy via a simple

action-level argmax: πQ⋆
= π⋆. However, these sorts of tabular algorithms assume we have

access to the transition dynamics (P (·|s, a)) everywhere. If we have to learn the dynamics

from data, we have to answer the question of where it is most important to do so to ensure

value learning leads to a strong policy.

16.2 Where should Bellman error be minimized?

16.2.1 Naive case, assuming we have data everywhere

If we have data for every state-action pair, we do not need to explore online.

Assumption 22 (Full Coverage) A distribution µ(s, a) is said to satisfy full coverage if

1

µ(s, a)
≤ C for all (s, a).

This condition implies that the density ratio dπ(s,a)
µ(s,a)

is bounded for any policy π, where dπ(s, a)

is the visitation distribution defined as the probability of encountering the state-action pair

(s, a) when following policy π starting from the initial state distribution.

Under full coverage, our dataset is sufficiently rich so that we do not need to explore online.

Instead, we can learn a model, plan using it, and extract a greedy policy. This approach

is known as certainty-equivalent model-based RL. Given a fixed dataset, the method
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computes the policy as follows:

P̂ (s′|s, a) =
count(s, a, s′)

count(s, a)

π̂(s) = arg max
a

Q̂P̂ (s, a) , where QP̂ is obtained via Q-value iteration inside P̂ (MBRL)

A standard uniform convergence argument tells us that with enough samples from µ, the

learned dynamics/transitions are close to the true ones. Moreover, the more data you have,

the lower the error will be. More formally, a Hoeffding + union bound (out of scope) tells

us that

||P̂ (·|s, a)− P (·|s, a)||TV ≤ ϵ := |S|
√

C

h
∀s, a.

Recall that under the assumption that we have a model that is good everywhere, i.e.

∥P̂ (·|s, a)− P (·|s, a)∥TV ≤ ϵ ∀ (s, a),

the Simulation Lemma implies that for any state-action pair,∣∣Q(s, a)− Q̂(s, a)
∣∣ ≤ H2ϵ.

Proof: For any state s, let π⋆ be the optimal policy for the true MDP M and let π̂ be the

greedy policy with respect to Q̂. Then, via an add and subtract trick,

Q(s, π∗(s))−Q(s, π̂(s)) = Q(s, π∗(s))− Q̂(s, π∗(s))︸ ︷︷ ︸
≤H2ϵ

+ Q̂(s, π∗(s))−Q(s, π̂(s))︸ ︷︷ ︸
≤H2ϵ

≤ H2ϵ + H2ϵ

= 2H2ϵ.

Applying the simulation lemma to both terms yields the final bound.

Note: in translating between finite horizon and discounted infinite horizon setting, 1
1−γ
≃ H.

We will interchange throughout the lecture for convenience of analysis.

16.2.2 All-π concentrability

All-π concentrability: ∀π, maxs,a
dπ(s,a)
µ(s,a)

≤ C. In other words, instead of needing to cover

every state-action pair, we only need to cover state and actions where any policies could visit.
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However, there may be policies that visit every state-action pair, making this condition not

that much weaker than full coverage.

Let us now introduce function approximation – i.e., going beyond the tabular setting. We’ll

search over a class of candidate value functions F for some f ∈ F such that f ≃ Q⋆. This

function class is defined as F ⊆ S × A 7→ [0, Vmax]. The natural offline algorithm for this

setting is called Fitted Q-Iteration (FQI), and it minimizes the squared Bellman error over

your offline dataset (Algorithm 3).

Algorithm 9 Fitted Q-iteration (FQI)

for h : H, ..., 0 do

fh ← arg minf∈F Ês,a[(f(s, a)− T fh+1(s, a))2]

end for

To prove guarantees for the above algorithm, we’ll need the Bellman Completeness As-

sumption: ∀f ∈ F , T f ∈ F – i.e. the Bellman backup of an arbitrary function in F is

contained in F . This is a very strong assumption, which is satisfied by limited settings such

as the tabular setting (the setting considered in this course). For instance, this doesn’t hold

for the deep neural net policies. The reason this is strong is that because adding a function

can break the assumption, unlike expert realizability in imitation learning where expanding

the policy class can only help. Given the strength of these assumptions, we will now consider

a weaker set of assumptions and a corresponding algorithm that works under them.

16.2.3 Single-Policy Coverage (SPC)

Definition 18 (Single-Policy Coverage) For some policy π, a distribution µ(s, a) satis-

fies single-policy coverage if

max
s,a

dπ(s, a)

µ(s, a)
≤ Cπ <∞

where dπ(s, a) is the visitation distribution under policy π and Cπ is the coverage coefficient.

Moving from all-π concentratability to SPC is similar to moving from for all to there exists.

Intuitively, we should be able to compete against policies where we’ve seen what they’ll do

in our dataset.

There are lower bounds showing that even in the realizable setting with Bellman com-

pleteness, SPC is insufficient to guarantee strong performance in the offline setting—online

algorithms can surpass these lower bounds. In practice, pure offline RL methods often face

severe distribution shift, making it challenging to determine when to stop training or which

checkpoint to deploy. Furthermore, model selection in offline RL often relies on some form of
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online testing (e.g., testing the performance of different checkpoints online and then choosing

the best one), so directly incorporating online interactions may not be too much of a leap.

The hybrid RL framework addresses these issues by using limited online data to correct

for distribution mismatch, thereby enabling more reliable policy improvement—if we have

access to an online environment, then SPC can be made to work.

Hybrid RL - You are given offline data but also access to online environment access. Note

that Agnostic System Identification [9] which we covered in the model-based RL lecture (Lec-

ture 15) was the first example of this setting. Here we introduce a model-free counterpart.

Algorithm 10 Hybrid Q-iteration (HyQ) [10]

We have offline dataset Doff, initialize f 0

for t = 1, . . . , T do

πt
h(s)← arg maxa f

t−1
h (s, a); ∀h ∈ [1, ..., H]

Don ← Don ∪ (s, a, r, s′) ∼ πt (online data)

f t ← FQI(Doff ∪ Don)

end for

Note, that h above indexes the timesteps of the MDP and the inner FQI loop, while t indexes

the iterations of the outer loop. In each outer-loop step, we learn a sequence of H policies

in the finite horizon setting. Observe that we aggregate online data like in DAgger.

In Hybrid RL, the goal is to compete against the best π with Cπ ≤ ∞, meaning we aim

to compete against any policy covered by the offline dataset. This is the same fundamental

objective as offline RL, but the ability to interact with the environment in Hybrid RL allows

us to circumvent the lower bounds that restrict purely offline methods. This goal is also quite

reasonable—if a policy is represented in the dataset, we should be able to imitate or even

surpass it. While we are typically limited to competing with the best policy contained in the

offline dataset, there are variations of this setting that allow us to get closer to the optimal

policy π⋆, often by incorporating an exploration bonus to guide the online interactions.

Why Should HyQ Work?

Intuitively, running FQI on the hybrid data guarantees low Bellman Error on states from πe

and the policy induced by HyQ πf . We now argue this is sufficient to guarantee we learn a

strong policy. We begin with a lemma analogous to the Performance Difference Lemma.

Lemma 23 Given any comparator policy πe, for any f ∈ F and corresponding greedy policy
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πf , we have

Es0∼d0

[
V πe

0 (s0)− V πf

0 (s0)
]
≤

H∑
h=1

E(sh,ah)∼dπeh

[
T fh+1(sh, ah)− fh(sh, ah)

]
︸ ︷︷ ︸

offline error

+
H∑

h=1

E
(sh,ah)∼dπ

f
h

[
fh(sh, ah)− T fh+1(sh, ah)

]
︸ ︷︷ ︸

online error

.

Proof: We can consider the following decomposition:

Es0∼d0

[
V πe

0 (s0)− V
πf

0 (s0)
]

= Es0∼d0

[
V πe

0 (s0)−max
a

f0(s0, a) + max
a

f0(s0, a)− V
πf

0 (s0)
]
.

We bound the second difference using a variant of the Performance Difference Lemma:

Es∼d0

[
max

a
f0(s, a)− V πf

(s)
]

(1)
= Es∼d0

[
Ea∼πf

0 (s)

(
f0(s, a)− V πf

0 (s)
)]

(2)
= Es∼d0

[
Ea∼πf

0 (s)

(
f0(s, a)− T f1(s, a)

)]
+ Es∼d0

[
Ea∼πf

0 (s)

(
T f1(s, a)− V πf

0 (s)
)]

(3)
= E

(s,a)∼dπ
f

0

[
f0(s, a)− T f1(s, a)

]
+ Es∼d0

[
Ea∼πf

0 (s)

(
R(s, a) + γ Es′∼P (s,a) max

a′
f1(s

′, a′)

−R(s, a) + Es′∼P (s,a)V
πf

1 (s′)

)]
(4)
= E

(s,a)∼dπ
f

0

[
f0(s, a)− T f1(s, a)

]
+ E

s∼dπ
f

1

[
max

a
f1(s, a)− V πf

1 (s)
]
.

(1) follows from the definition of the greedy policy. (2) follows from an add and subtract

trick. (3) follows from expanding out the Bellman operator and usimg the definition of the

value function. Lastly, (4) follows from canceling terms, leaving us with what we started

with except one step further in the future. Then, we we can solve the recurrence relation for

the overall bound. We can similarly bound the first term, which is done in [10].
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Completing the Proof

To complete the performance bound, note that offline error term can be further bounded by

a change of measure. Specifically, noting that

E(s,a)∼dπe [h(s, a)] = E(s,a)∼µ

[
dπe(s, a)

µ(s, a)
h(s, a)

]
,

with h(s, a) = T fh+1(s, a)− fh(s, a) (i.e. the Bellman Error at (s, a)), we have

H∑
h=1

E(sh,ah)∼dπeh

[
T fh+1(sh, ah)− fh(sh, ah)

]
=

H∑
h=1

E(sh,ah)∼µ

[
dπe(sh, ah)

µ(sh, ah)

(
T fh+1(sh, ah)− fh(sh, ah)

)]
Next, we can apply the Cauchy-Shwartz inequality:

≤
H∑

h=1

√√√√E(sh,ah)∼µ

[(
dπe(sh, ah)

µ(sh, ah)

)2
]
· E(sh,ah)∼µ

[(
T fh+1(sh, ah)− fh(sh, ah)

)2]

≤
H∑

h=1

√
C · E(sh,ah)∼µ

[(
T fh+1(sh, ah)− fh(sh, ah)

)2]
,

where the final inequality uses the SPC assumption w.r.t. πe, i.e. that

dπe(s, a)

µ(s, a)
≤ C for all (s, a).

This gives us an overall bound of

Es0∼d0

[
V πe

0 (s0)− V πf

0 (s0)
]
≤

H∑
h=1

√
C · E(sh,ah)∼µ

[(
T fh+1(sh, ah)− fh(sh, ah)

)2]
(16.95)

+
H∑

h=1

E
(sh,ah)∼dπ

f
h

[fh(sh, ah)− T fh+1(sh, ah)] . (16.96)

Observe that minimizing squared Bellman Error on samples from µ makes the first term

small. Under certain assumptions we don’t discuss here, an analogous bound can be proved

for the second term in terms of squared Bellman Error – see [10] for the full proof. The key

take-away from the above proof is that hybrid RL allows us to compete against a policy with

just SPC, which purely offline algorithms provably cannot achieve. Furthermore, hybrid RL

is efficient, in the sense we can avoid explicit optimism / pessimism procedures.
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17.1 What is Model Predictive Control (MPC)?

Model Predictive Control (MPC) is a fundamental building block of most modern robotics

systems. Intuitively, rather than solving a planning problem at all states one could see in

an offline fashion, we simply solve a truncated horizon planning problem at the states we

do see during online rollouts in MPC. In this sense, MPC is a lazy algorithm, in the sense

it only does computation at the last moment before it is required.

A bit more formally, for each h ∈ [H]:

1. Plan a sequence of k actions starting from sh in T ⋆ (perfect model) or T̂ (imperfect

model): ãh+h+k.

2. Execute the first of these actions ah = ãh in T ⋆.

In other words, we solve

ãh:h+k = arg max
ah:h+k

ET

[
h+k∑
τ=h

r(sτ ) + V (sh+k)|ah:h+k

]
, (17.97)

before executing the first of these actions in the real world and then re-planning. Re-planning

is only valuable when our estimated s′h+1 (what we expect would happen) differs from the

true sh+1, i.e. when the dynamics are stochastic. This is true for many robotics problems

but not for auto-regressive language generation. Thus, the variants of MPC that are used

for language models (e.g. best-of-N) usually don’t involve a re-planning procedure.

17.2 How much does lookahead improve performance?

A natural question at this point might be what the value of MPC / lookahead search is for

performance. As we will discuss in greater detail below, a k-step lookahead search can be

considered performing k iterations of the policy improvement procedure.
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Consider some policy π with value function V π. Single-step policy improvement looks like

π+
1 (s) = arg max

a∈A
r(s) + Es′∼T (s,a)[V

π(s′)]]. (17.98)

Observe that this is just MPC with k = 1. Now, using the Performance Difference Lemma,

we can prove that this local improvement guarantees a better policy, globally speaking:

J(π+
1 )− J(π) = Eζ∼π+

1

[
H∑
h

Qπ(sh, ah)− Ea′∼π(sh) [Qπ(sh, a
′)]

]
(17.99)

= Eζ∼π+
1

[
H∑
h

max
a

Qπ(sh, a)− Ea′∼π(sh) [Qπ(sh, a
′)]

]
(17.100)

≥ 0, (17.101)

where the last follows from the fact that each term inside the expectation is non-negative.

Let us now consider MPC with k-step lookahead. For simplicity, we will assume access to a

perfect model but a more general version of the following results can be proved via an appeal

to the simulation lemma we discussed previously. Define the k-step lookahead policy as

π+
k (sh) = arg max

ah:h+k

ET ⋆

[
h+k∑
τ=h

γτ−hr(sτ ) + γkV π(sh+k) | sh, ah:h+k

]
. (17.102)

Define ϵ as the largest value difference between our current policy and the optimal policy

over the state space: ϵ = maxs∈S
V ∗(s)−V π(s)

H
. We define ϵ this way to make things horizon-

independent. We will now show that

J(π∗)− J(π+
k ) ≤ O

(
ϵγkH(1− γH)

1− γk

)
, (17.103)

i.e. that lookahead search allows us to decrease the performance difference as we scale up k.

Proof: Similar to the simulation lemma, the proof proceeds via adding / subtracting a

“cross-term” and then canceling terms to end up with time-shifted terms. For notational

convenience, we will drop the s1 = s conditioning from all of the preceding equations.

V ⋆(s)− V k
+(s) = E

[
k∑
h

γhr(sh) + γkV ⋆(sk) | π⋆

]
︸ ︷︷ ︸

a

−E

[
k∑
h

γhr(sh) + γkV k
+(sk) | π+

k

]
︸ ︷︷ ︸

d

= a + E

[
k∑
h

γhr(sh) + γkV ⋆(sk) | π+
k

]
︸ ︷︷ ︸

b

−E

[
k∑
h

γhr(sh) + γkV ⋆(sk) | π+
k

]
︸ ︷︷ ︸

c

+d.
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Observe that the the discounted sum of rewards in b and d cancel out as the expectations

are taken over actions chosen by the same policy. After canceling and collecting like terms,

we are left with

= a− E

[
k∑
h

γhr(sh) + γkV ⋆(sk) | π+
k

]
+ γkE

[
V ∗(sh)− V +

k (sh) | π+
k

]
. (17.104)

Now, given we don’t a-priori know that V ⋆ is, we’re going to replace it with the value function

of the policy V π, which by assumption differs by at most ϵH at any state. We’ll do this in

both terms a and b, which gives us

≤ E

[
k∑
h

γhr(sh) + γkV π(sk) | π⋆

]
− E

[
k∑
h

γkr(sh) + γkV π(sh) | π+
k

]
+ γkE

[
V ⋆(sk)− V +

k (sh) | π+
k

]
+ 2ϵHγk. (17.105)

Next, we note that πk
+ is the policy that by definition maximizes the first term so we can

upper bound the expectation under π⋆ and cancel like terms:

≤ E

[
k∑
h

γhr(sh) + γkV π(sk) | πk
+

]
− E

[
k∑
h

γhr(sh) + γkV π(sk) | π+
k

]
+ γkE

[
V ∗(sk)− V +

k (sh) | π+
k

]
+ 2ϵHγk (17.106)

= γkE
[
V ∗(sk)− V +

k (sh) | π+
k

]
+ 2ϵHγk. (17.107)

Observe this is the same term we started off with, just shifted k steps into the future. We

can therefore compute the sum of the geometric series analytically to arrive at

≤ 2ϵHγk

H/k∑
i=1

(γk)i =
2ϵγkH(1− γH)

1− γk
. (17.108)

For the infinite horizon version, one would instead solve a recurrence relation.

17.3 What are the different variants of planning?

Given we now understand the performance benefits of MPC, let us consider several standard

algorithms which fall under the template we sketched above. Once again, our optimization

problem will be to solve

ãh:h+k = arg max
ah:h+k

ET

[
h+k∑
τ=h

r(sτ ) + V (sh+k) | ah:h+k, sh

]
. (17.109)
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Let us consider each part of the above in sequence. Consider for a moment a deterministic

problem. A “shooting” method expands the above objective via recursion:

r(s0) + r(T (s0, a0)) + r(T (T (s0, a0), a1) + . . . (17.110)

Observe that the repeated applications of T can lead to an ill-conditioned optimization

problem, similar to the vanishing / exploding gradient issue when training a recurrent neural

network. This can make it hard to use first-order methods (which rely on gradients) unless

there’s a more nicely behaved T̂ that approximates the ground-truth dynamics well (e.g. in

iLQR algorithms). Thus, we’ll mostly focus on zeroth-order algorithms for this lecture.

Solving the argmax over k actions can often be expensive, so it is common to have some

“base policy” one samples m k-step plans from before selecting from this set of m options.

The expectation over the next k steps is often done inside a (learned) world model.

The value function / terminal heuristic V is left underspecified in the above general formu-

lation. Ideally it would be V ⋆. In practice, we might hope to have access to some expert

value function V E, in which case the above is a lookahead version of DAgger / AggraVaTe.

Let us now discuss four popular algorithms that fit under the above template.

17.3.1 Best-of-N (BoN)

Under the assumption of having tree-structured, deterministic, perfectly known dynamics

(i.e. auto-regressive language generation), we can simplify the above formulation to a1:H =

arg maxa11:H ...aN1:H
r(sH). No re-planning is required because we always append the token we

expect to. A terminal cost is sufficient because sH allows us to uniquely decode all actions

/ tokens – it is merely their concatenation.

17.3.2 Cross Entropy Method (CEM)

Sample a11:k...a
N
1:k ∼ πt. Then, pick the top (both in terms of the k rewards and the terminal

cost) ≈ 10% of these and compute their mean µt+1. Finally, set πt+1(sh) = N (µt+1, σ
2).

Commonly used robotics planning algorithms like Model Predictive Path Integral Control

(MPPI) are essentially fancier versions of the above idea.
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17.3.3 Sparse Sampling (Kearns, Mansour, Ng)

The algorithm proceeds as follows: start with some state s. Try each action ai some number

(c) of times and track where each action led. Next, from each of these resulting states,

repeat the process. Do this up to a maximum depth of H. Critically, we don’t do this for

all possible next states – only for the next states seen during the sampling process. Given

these empirical frequencies, we can just divide the number of times taking action a in state s

lead to state s′ by c to build an approximate dynamics model / MDP M̂ . One can then run

an arbitrary RL algorithm inside M̂ to compute π̂∗. It is possible to set c and H such that

we have strong policy performance guarantees independent of the size of the state space |S|.
This contrasts with the standard policy / value iteration algorithms, where the amount of

computation you have to do scales linearly with the size of the state space. We won’t delve

into it in this lecture but this is, more formally, what the ”laziness” of MPC means.

17.3.4 Monte Carlo Tree Search

Rather than sampling each action c times, we can use a more efficient exploration strategy.

Intuitively, if we consistently see that some state/action pair leads to a bad outcome, we

stop exploring from it. More formally, to trade off exploration and exploitation, we use

πUCT (s) = arg max
a

Q̂(s, a) + c

√
ln(n(s))

n(s, a)
. (17.111)

The second term comes from an upper confidence / Hoeffding bound. This can be seen as

the natural sequential generalization of a bandit algorithm.

17.4 How can we iterate this process?

Once we’ve ran a k-step look-ahead search, it often makes sense to not just throw away

that computation and instead use it to update the base policy so that we can have a better

starting point for the next round of policy improvement. This is often called expert / dual

policy iteration and is fundamental to how systems like AlphaGo work. Intuitively, one uses

MPC as a local expert and updates the policy via DAgger / distillation. A bit more formally:

For each round of the algorithm t ∈ [T ]:

1. Do a k-step local search / MPC around πt to produce an improved ηt.

2. Use DAgger with ηt as the expert to produce πt+1 = arg maxπ∈Π Esh∼πt,ah∼ηt [log π(ah|sh)].
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Part IV

Imitation Learning
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18.1 Outline

In this lecture, we will focus on three key questions:

1. Why do we need interaction in imitation learning?

A: to be able to tell that we’ve made a mistake that compounds. (necessity)

2. What else do we need to tell which mistakes matter?

A: information about the set of rewards we could be judged on. (sufficiency)

3. How do we learn a policy that recovers from mistakes that matter if we don’t know

what the reward function is?

A: find the policy that is the least distinguishable from the expert’s under any reward

function in the moment set R.

18.2 Why do we need interaction in IL?

At a high level, it is to be able to tell that we’ve made a mistake that compounds, i.e. one

that compounds over the horizon.

18.2.1 The Pitfalls of Behavioral Cloning

Behavioral cloning is an offline / supervised learning approach to imitation learning. Given

some set of expert demonstrations, the BC optimization problem is to solve

arg min
π∈Π

Eξ∼πE

[
− log

(
H∏
h

π(ah|sh)

)]
= arg min

π∈Π

H∑
h

Esh,ah∼πE
[− log π(ah|sh)].

As we discussed in the DAgger lecture, an ϵ probability of making a mistake can often lead

to a performance that scales quadratically with the horizon, rather than the expected linear

scaling. This phenomenon is known as compounding errors.
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18.2.2 What went wrong?

At train time, offline algorithms like BC look at

ℓBC(π) = Esh,ah∼πE
[− log π(ah|sh)].

However, at test time, the learner actually sees Esh∼π ̸= Esh∼πE
. Thus, ptest(x) ̸= ptrain(x),

which is called covariate shift in the machine learning literature.

Not being able to avoid compounding errors is a fundamental property of all offline algo-

rithms, as we now sketch via a lower bound example.

Figure 18.13: Suppose we have an expert policy πE that at h = 1, takes action a1 to go from

state s0 to s1, and then afterwards takes action a2 to stay in state s1 forever. Now suppose

we have two policies (π1, π2), both of which take a1 at h = 1 and with probability ε take

action a1 to end up in s2 while at state s1. However, these two policies differ in terms of

their behavior at s2, which is outside of the support of the expert. Specifically, π1 moves

immediately back to s1 via a1 when it gets to s2, but π2 stays in s2 indefinitely by taking

a2. In this MDP, only state s1 gives a reward of 1 per timestep (r(s, a) = 1[s = s1]).

Observe no offline IL algorithm can tell the difference between π1 and π2 because

they only differ on states outside of the support of the demonstrations. Mathematically,

we have J(πE, r) − J(π1, r) = εH, and J(πE, r) − J(π2, r) = εH2 (quadratic), despite

ℓBC(π1) = ℓBC(π2). In short, offline IL fundamentally can’t differentiate between policies

that recover and those that don’t, which means it can’t avoid compounding errors.

Where does the ε come from?

A natural question after going through the above example is where ε comes from. Roughly

speaking, there are three sources, each of which might matter for a particular problem:
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1. Finite-sample error: limited number of expert demos.

A: Get more data.

2. Optimization error: imperfect search over policy class.

A: Use more compute (e.g. use a better optimizer).

3. Misspecification error: irreducible error from πe /∈ Π.

A: Use an interactive algorithm.

We’ll focus mostly on the third case for this lecture as it is the most fundamental / hard to

solve via scaling data or compute. As we’ll discuss further, interaction effectively generates

samples from the test distribution, allowing us to handle covariate shift.

18.3 What else do we need to tell which mistakes mat-

ter?

At the highest level, we need some sort of information about the set of rewards we could be

judged on. We’ll use R to denote this set for the rest of the lecture.

18.3.1 Not All Mistakes are Made Equal

We now sketch a simple example of why some knowledge of R is necessary to avoid com-

pounding errors.

Figure 18.14: Assume πE goes from s0 to s1 and stays there indefinitely. Now at s1, π1 has

probability ε to go to s2 and stay there indefinitely, and π1 has probability ε to go to s3 and

stay there indefinitely.

To be able to pick between π1 and π2, we need to be able to tell which mistakes cost

us performance, which is what R represents. For example, if we know s2 corresponds to a

“lane change” but s3 corresponds to a “car crash,” it becomes much easier to select between

π1 and π2.
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18.3.2 Moments in Imitation Learning

For example, in autonomous driving, the set of moments (basis rewards) could include:

R = {distance to nearest car, distance to center of lane, distance from edge of road,

distance from nearest person, speed/speed limit, ...}

Note that knowing R is often much easier than knowing r. Concretely, rather than needing

to know the precise trade-offs between factors (e.g. how much better it is to arrive five

minutes earlier by being 1 inch closer to the nearest vehicle), we simply need to know the

set of criteria we could be judged under.

For the rest of this lecture, we’ll assume reward realizability, i.e. r ∈ R. However, given we

don’t know precisely which f ∈ R is R, we will attempt to be good under all f ∈ R!

18.4 How do we learn a policy that recovers from mis-

takes that matter if we don’t know what the reward

function is?

More formally, we can attempt to have a bounded performance difference from the expert

under all reward functions in R, which naturally leads to the form of a zero sum game:

max
π∈Π

min
f∈R

J(π, f)− J(πE, f), where J(π, f) = Eξ∼π

[
H∑
h

f(sh, ah)

]
(18.112)

Some notes on the above objective:

• If we dropped the first term and just tried to optimize maxπ∈Π minf∈R−J(πE, f), we

could just pick a reward function that is a constant everywhere. This is because the

expert (as well as any other policy) is optimal under this reward function. This is what

people mean when they talk about the ill-posedness of an inverse problem.

• This maximin objective is linear in f but not convex in π, but we’ll ignore the non-

convexity for now. Also note that the range of this payoff is [−H,H].

18.4.1 Game-Solving Searches the Pareto Frontier

Before we discuss the performance bounds of inverse RL, we now provide some intuition

about what the solution (i.e. Nash equilibrium) to the above game looks like.
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Figure 18.15: For each candidate policy in Π, we can look at its performance on each possible

reward function r ∈ R = {r1, r2}. The Pareto frontier is then the set of policies that cannot

increase its performance on one reward function without decreasing the performance on some

other reward function (απ1 + (1 − α)π2). A solution to the game must live on this Pareto

frontier, effectively reducing the search space we look over, providing a statistical benefit

(i.e. fewer samples needed to find a good policy than behavioral cloning).

We will now do the simplest proof in this entire course:

Lemma 24 Assume π̂ is an ε-approximate equilibria for the IRL game and for simplicity

assume πE ∈ Π and r ∈ R. Then,

J(πE, r)− J(π, r) ≤ O(εH). (18.113)

Proof:

min
f∈R

J(πE, f)− J(π̂, f)

H
≤ ε⇒ J(πE, r)− J(π̂, r) ≤ O(εH). (18.114)

Notice that the performance bound is linear in the horizon, which means we provably avoid

compounding errors. Note that we don’t need a queryable expert like DAgger.

To summarize, there are three key facts to remember about inverse RL:

1. Inverse RL lets avoid compounding errors without needing access to extra expert in-

teraction.

2. Inverse RL reduces the search space of policies to just those that are on the Pareto

frontier.

3. Inverse RL isn’t merely picking a reward that makes the expert look optimal—it is

fundamentally game-theoretic.
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18.5 How do we solve the IRL Game?

We’ll use BR to mean “Best Response” and NR to mean “No Regret”. As we discussed

in the game-solving lecture, we can solve a game by running a no-regret player against a

best-response player or against another no-regret player. We have special names for these

two flavors of game solving in IRL: primal and dual. In greater detail:

Dual Primal

Policy Update BR: RL NR: GD (PG Step)

Reward Update NR: OGD NR: OGD

A popular dual algorithm is Maximum Entropy Inverse RL (MaxEnt IRL) and a popular

primal algorithm is Generative Adversarial Imitation Learning (GAIL). We will now discuss

the former in greater detail as it is usually not presented from a game-theoretic lens.

18.6 MaxEnt Inverse RL

We seek the policy with maximum entropy that matches the expert’s moments:

max
π

Eξ∼π

[
H∑
h

− log π(ah|sh)

]
(maximize causal entropy)

s.t.∀f ∈ R, Eξ∼π

[
H∑
h

f(sh, ah)

]
= Eξ∼πE

[
H∑
h

f(sh, ah)

]
(match expert moments)

It may seem a bit daunting to solve a trajectory-level maximum entropy problem (rather

than a single-step problem). However, as we will now derive, the solution follows a beautiful

form. First, forming the Lagrangian, we have

max
λ∈R|R|

min
π

Eξ∼π

[
H∑
h

− log π(ah|sh)

]
+
∑
f∈R

λf (J(π, f)− J(πE, f)). (18.115)

Observe that this is just an entropy-regularized variant of our above inverse RL game. An-

other way to derive the game is via this constraint satisfaction perspective. 5

5In the misspecified setting, there might be no policy that satisfies the constraints. Thus, it is common

to regularize the Lagrange multipliers with a quadratic penalty
∑

f∈R λ2
f , sometimes called an augmented

Lagrangian or AuLa for short.
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Let us now solve this game via a dual strategy (i.e. with best responses over policies). For

some fixed λt, we can write the best-response over π as

min
π

Eξ∼π

[
H∑
h

log π(ah|sh)

]
+ J

(
π,
∑
f∈R

λf
t f

)
. (18.116)

This is because (1) we can drop the J(πE, f) as it is constant with respect to π, (2) J is a

linear function with respect to the second argument. Next, observing that both J and causal

entropy are expectations over trajectories sampled from π, we have

πt = arg min
π∈Π

Eξ∼π

[
H∑
h

(
− log π(ah|sh) +

∑
f∈R

λf
t f(sh, ah)

)]
. (18.117)

Observe that what remains is just a standard RL problem with a somewhat special reward:

rt(sh, ah) ≜ log π(ah|sh) +
∑
f∈R

λf
t f(sh, ah). (18.118)

We can therefore apply our standard RL tools like value iteration to solve this problem. Let

us proceed backwards in time, starting with h = H. Because there is nothing left to do,

V ⋆
t (sH) = 0. (18.119)

For the inductive step (i.e. h ∈ [0, H − 1]), value iteration tells us to solve

π⋆
t (·|sh) = min

p∈∆(A)
Ep

[
log p(a) +

∑
f∈R

λf
t f(sh, a) + ET (sh,a)[V

⋆
t (sh+1)]

]
(18.120)

Observe that this is a single-step maximum entropy problem – i.e. the kind we previously

covered how to solve! Recall that for MaxEnt problems of the form

min
p∈∆(X )

−H(p) + Ep[m(x)] (18.121)

have solutions of the form

p⋆(x) =
exp(m(x))∑

x′∈X exp(m(x′))
. (18.122)

Here, we have

m(a) =
∑
f∈R

λf
t f(sh, a) + ET (sh,a)[V

⋆
t (sh+1)]. (18.123)

Matching terms, we now know the solution to the above in closed form:

π⋆
t (ah|sh) =

exp
(∑

f∈R λf
t f(sh, ah) + ET (sh,ah)[V

⋆
t (sh+1)]

)
∑

a∈A exp
(∑

f∈R λf
t f(sh, a) + ET (sh,a)[V

⋆
t (sh+1)]

) . (18.124)
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The fact that π⋆
t takes the form of a softmax is what leads to the above procedure being

referred to as soft value iteration. More generally, soft RL refers to entropy-regularized RL

problems. Recall that this softmax form is also what we derived when discussing Hedge

/ Multiplicative Weights and the Natural Policy Gradient. Thus, even though we took a

completely different route, we ended up with a strikingly similar solution!

We can now back up another timestep to get the next value function:

V ⋆
t (sh) = Eah∼π⋆

t (sh)
[log π⋆

t (ah|sh) + λf
t f(sh, ah) + ET (sh,ah)[V

⋆
t (sh+1)]. (18.125)

To close, recall that Bellman’s principle of optimality says that an optimal policy acts op-

timally at the current step and then acts optimally in the future. Intuitively, the above

derivation is telling us that the maximum entropy policy is maximally random at the cur-

rent step and then maximally random in the future.
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17-740 Spring 2025

Algorithmic Foundations of Interactive Learning

Lecture 19: Efficient Algorithms for Inverse RL

Lecturer : Gokul Swamy

Scribe: Lujing Zhang, Jim Wang, Ryan Schuerkamp

19.1 Outline

We will cover the following topics today:

1. What makes inverse RL sample-inefficient?

A: Repeatedly solving a global exploration (RL) problem.

2. Are best responses required for solving the IRL game?

A: Actually, competing with the expert is “all you need”.

3. What algorithms can we use in our new reduction?

A: A wide variety of sample-efficient “local search” algorithms.

19.2 Recap: IRL as Game-Solving

Recall that we can frame inverse reinforcement learning (IRL) as solving a zero sum game:

max
π∈Π

min
f∈R

J(π, f)− J(πE, f), (19.126)

where J(π, f) = Eξ∼π

[∑H
h f(sh, ah)

]
. Intuitively, when solving the above game, we’re trying

to find a policy π that isn’t too distinguishable from πE under any reward function f ∈
R. More formally, an ϵ-approximate Nash Equilibrium of the above game guarantees that

J(π, r)− J(πE, r) ≤ O(ϵH) if r ∈ R. We discussed two strategies for solving this game:

Dual Primal

Policy Update BR: RL NR: GD

Reward Update NR: GD NR: GD

An example of a dual algorithm is MaxEnt IRL, while an example of a primal algorithm is

GAIL. Observe that in computing the best response over policies, dual algorithms need to

solve the global exploration problem inherent in RL. It is more subtle but the same is true
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for primal algorithms as well. This is because the adversary could keep playing the same f

and to satisfy the no-regret property, the policy player would need to compute π∗ eventually.

More formally, any no-regret algorithm can be used to compute a best response. And, as we

discussed in earlier lectures, algorithms like follow the regularized leader use a best response

oracle to implement a no-regret algorithm. Thus, NR and BR aren’t that different.

19.3 What makes inverse RL sample-inefficient?

Repeatedly needing to solve a global exploration problem over the entire state-space is what

makes inverse RL inefficient. We ground this point in a tree-structured MDP:

Figure 19.16: Consider a binary tree structured MDP of depth H where the reward function

class R is indicator functions at “leaf nodes” at time H (1 node out of 2H nodes at time

H has reward 1, all other nodes 0). Thus, at each round of IRL, after the adversary picks

some f , we might have to explore all leaf nodes before we find any reward, an amount of

interaction that grows exponentially with the task horizon – exp(H). Then, at the next

iteration, we need to solve a similar problem again after the adversary shifts the reward. In

some sense, we’re using an RL hammer in a game of adversarial whack-a-mole.

Beyond being a worst-case constructions, applications like auto-regressive language genera-

tion have this tree-structured property. Intuitively, this is strange because we’ve reduced the

“easier” problem of IL to repeatedly solving the “harder” problem of RL.

104



19.4 Are BRs required for IRL?

Intuitively, we waste interaction in IRL by searching over policies that are dissimilar to the

expert’s. We sketch an example of this below:

Figure 19.17: Consider some adversarially chosen reward ft. The optimal policy for this

reward, π∗
t , might be far from πE. This means it can’t be the policy we want, as we’re just

trying to compete with the expert for inverse RL.

This leads to our key idea: saving interaction by competing with πE, not π
∗
t . This allows us

to prune large parts of the state / policy space. We now make this intuition more formal.

19.4.1 Reducing IRL to Expert-Competitive RL

We now derive a more informed reduction for IRL that allows us to eliminate the complexity

of global exploration. First, we introduce the notion of an expert-relative regret oracle, i.e.

an algorithm that merely competes with the expert on average:

Definition 19 (ERROr{Regπ(T )}) A policy-selection algorithm Aπ satisfies the Regπ(T )

expert-relative regret guarantee if given any sequence of reward functions f1:T , it produces a

sequence of policies πt+1 = Aπ(f1:t) such that

T∑
t=1

J(πE, ft)− J(πt, ft) ≤ Regπ(T ). (19.127)

We never need to compute a best response to an ft – doing so is sufficient but not necessary!

For completeness, we also define a no-regret reward selection algorithm.
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Definition 20 Af is a no-regret reward selection algorithm if when given a sequence of

policies π1:t, it produces iterates f1:t = Af (π1:t) such that

T∑
t=1

J(πt, ft)− J(πE, ft)− min
f∗∈R

T∑
t=1

J(πt, f
∗)− J(πE, f

∗) ≤ HRegf (T ),

with limT→∞
Regf (T )

T
= 0.

We now show that with just these two oracles, we can solve the IRL game:

Proof: Consider using an ERROr algorithm to select policies and a no-regret reward se-

lection algorithm to select discriminators. Then, we can expand the average performance

difference over T rounds of the algorithm as

J(πE, r)− J(π̄, r) =
1

T

T∑
t=1

J(πE, r)− J(πt, r) (Linearity of expectation)

≤ max
f∗∈Fr

1

T

T∑
t=1

J(πE, f
∗)− J(πt, f

∗) (Reward realizability)

≤ 1

T

T∑
t=1

J(πE, ft)− J(πt, ft) +
Regf (T )

T
H (Defn. of regret)

≤ Regπ(T )

T
+

Regf (T )

T
H (Defn. of ERROr)

In short, the above proof tells us that competing with the expert is all you need for IRL!

19.5 What algorithms can we use in our new reduction

A natural question at this point might be as to what an efficient algorithm that actually

satisfies the ERROr property is. It turns out we’ve covered quite a few over the semester:

PSDP, HyQ, Agnostic SysID. Basically, anything derived from a variation of the performance

difference lemma works! We now step through the use of PSDP in IRL in detail.

19.5.1 Expert-Competitive RL via PSDP

Key Idea: Reset to states from the demonstrations to reduce unnecessary exploration in IRL!

In words, we’re reducing interaction complexity by performing a local search. For longer

horizon problems where we’d like a single, stationary policy, we can instead pick a random
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Figure 19.18: Let us consider our tree-structured MDP again with the additional information

that the expert takes the leftward, green path. We proceed via backwards in time induction.

First, at h = H−1, we have to figure out whether we go left or right from the expert’s sH−1.

We would pick to go left to get reward 1, which we then lock in to compute π3. We then

back up a timestep to h = H − 2 and again pick a single-step decision conditioned on the

future policies we’ve computed. If we go left, we’d go left again and get reward 1. If we go

right, we’d then go left and get reward 0. So, we’d choose to go left, giving us π2. We can

do this all the way up the tree. Observe that we only need O(H) interaction at each step

of the algorithm and there are H steps, which gives us an overall interaction complexity of

O(H2), an exponential speedup.

timestep rather than doing backwards-in-time induction and achieve similar guarantees.

Practically, this algorithm corresponds to doing resets to states from the expert demonstra-

tions during the inner loop of IRL, rather than to the true start-state distribution. Of course,

it is hard to do resets in the real world, so one can instead learn a model (fitting it on a

hybrid distribution of learner and expert data) and do resets inside the model. Intuitively,

fitting a model on just expert data can make it too optimistic, while fitting a model on just

learner data can make it too pessimistic. Fitting on a hybrid mixture provably balances

optimism and pessimism without computational intractability.

19.5.2 PSDP Performance Guarantees

For completeness, we now state the formal performance guarantee for PSDP:

Lemma 25 (PSDP Performance Guarantee) Assume that at each time-step h ∈ [H],

we perform policy optimization up to ε-optimality on some baseline distribution µ:
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Esh∼µ

[
Ea∼π′

h(sh)

[
Q

πh+1:H

t (sh, a)
]
− Ea∼πh(sh)

[
Q

πh+1:H

t (sh, a)
]]
≤ εH

Then, the performance of the learned policy satisfies:

J(π′
1:H , ft)− J(π1:H , ft) ≤ O((ε + DTV (µ, ρπ′) ·H2)

where µ is the reset distribution used for PSDP, ρπ′ is the occupancy measure of the reference

policy π′, and TV(µ, ρπ′) is the total variation distance between the two distributions.

Proof: We proceed via the Performance Difference Lemma (PDL):

J(π′
1:H , ft)− J(π1:H , ft) =

H∑
h

Esh,ah∼π′
1:h

[
Qπh+1:H (sh, ah)− Ea∼πh(sh) [Qπh+1:H (sh, ah)]

]
≤

H∑
h

Esh,ah∼µ

[
Qπh+1:H (sh, ah)− Ea∼πh(sh)Q

πh+1:H (sh, ah)
]

+ H · DTV (µh, ρ
π′

h ) (by Hölder’s inequality)

≤
H∑
h

(ε + DTV (µh, ρ
π′

h )) · 2(H − h)

≤ (ε + DTV (µ, ρπ′)) ·H2

In the language we used above, this result means that Regπ(T ) ≤ (ε + DTV (µ, ρπ′)) ·H2T .

While we don’t discuss this in detail in the lecture, observe that we can use reset distributions

other than the expert demonstrations and still have strong performance guarantees so long

as µ (the reset distribution) is close to ρE (the expert’s state distribution). This is a natural

opportunity to use plentiful suboptimal data to speed up exploration – see the linked paper

on the course website for more information.

19.5.3 Compounding Errors in PSDP

A natural question after seeing the O(H2) term in the above bound might be whether the

above bound is tight. Put differently, does PSDP suffer from compounding errors just like

behavior cloning does in some situations? Recall that the whole reason we’re using an

interactive algorithm for imitation is to avoid compounding errors.

It turns out that in the worst case (e.g. cliff-walking, irrecoverable problems), this is true.

However, on less harsh problems, PDSP can recover from some errors, since it knows some

information about what it’s going to do in the future. We sketch an example of both below.
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Figure 19.19: Top: We consider a cliff-walking problem where a single mistake can doom

the learner for the rest of the horizon. Assume the policies for timesteps [1, H] have been

computed and stay on the top of the cliff. At h = 0, the learner picks a policy that makes a

mistake with probability ϵH. While they have an average error of ϵ, they have a performance

difference from the expert that scales with O(ϵH2). Furthermore, an interactive algorithm

like PSDP wouldn’t be able to fix such issues any better than behavioral cloning as during

the computation of policies [1, H], we pretend the learner is going to start from the top of the

cliff rather than having already fallen off. Bottom: We now consider a recoverable problem,

where the expert takes the middle path but either of the top two rows give accessible reward.

Similar to before, assume we perfectly imitate the expert for steps [1, H] by going straight.

At h = 0, we give the learner the ability to choose between going up or down. Observe that

PSDP would know to choose to go up because it observes the consequences of its future

actions, while BC would be unable to tie-break correctly.

Thus, while in the worst case, resetting to expert states can introduce compounding errors,

it is less likely to do so on problems with recoverability. See papers linked on course website

for a more formal statement of the above. In practice, one can also start by only looking

at expert state distributions, but then gradually interpolate with or anneal towards the

ground-truth initial state distribution ρ0 to reduce compounding errors.

19.5.4 Additional Algorithms

While we do not discuss this idea in detail, one can also run HyQ as part of the above

reduction and have similar guarantees. In practice, this corresponds to running some off-
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policy RL algorithm (e.g., SAC) with a hybrid replay buffer (e.g., RLPD). Intuitively, this

helps speed up policy search as we’re picking a reward function that makes the expert look

good, so training on expert data is likely to provide positive signal.
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17-740 Spring 2025

Algorithmic Foundations of Interactive Learning

Lecture 20: Imitation Learning In Real Life

Lecturer : Sanjiban Choudhury

Scribe: Yang Zhou, Miaosi Dong, Pranjal, Harshita Diddee

20.1 Why Imitation Learning?

There are two main reasons why imitation learning (IL) is used in real-world setups:

20.1.1 The Alignment Problem

It is intractable to enumerate all the rules and rewards necessary to completely and correctly

incentivize the right actions to an agent. Hand-designing rewards often relies on implicit

“common sense” or shared values that the agent doesn’t possess.

• For example, When tasked with making a cup of coffee, a reward that awards a cup

of coffee may need to be accompanied with an explicit penalty for procuring the coffee

through other means than actually making the coffee (Stealing someone else’s coffee!).

• Another example: Trying to encode driving rules from an official handbook would

fail in complex situations. (e.g., in gridlock intersections)

The above example also demonstrates explicitly programming reward is tedious, error prone,

hackable. Instead, robots should infer rewards from natural human feedback. That’s why

imitation learning is needed. Finally, a rule-based approach to maximizing rewards is also

unlikely to be sustainable in the noisy, real world where humans and other agents may not

comply with the rules expected during the agent’s policy training.

Summary: Given this brittleness and impracticality of hand engineering rewards, it is much

more desirable to design a way of learning from the ideal behavior demonstrated by humans.

This learning should help the agent infer the rewards from demonstrations provided by the

human and also allow the agent to actively query the human to seek demonstrations in

scenarios where it isn’t able to infer a reward. Imitation Learning is a step in this direction.

In nutshell, alignment problem can be defined as:

Definition 21 (Alignment Problem) We have two entities: humans and robots. Hu-
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Figure 20.20: Alignment Problem

mans have some ideal behavior in mind, which is difficult to express in functional form, but

can be conveyed naturally through language, demonstrations, preferences, or rankings. The

goal of the Robot is to actively query the human to gather more information to infer the

reward.

(as Figure 20.20 illustrates.)

20.1.2 The Collaboration Problem

We want to consider the human in the environment as first-class citizens.

• Example of the MOSAIC system (A Modular System for Assistive and

Interactive Cooking): A human user interacts with a team of robots assisting them

in cooking a recipe. The recipe exists in the user’s mind and is not explicitly known

to the robots. There is a high degree of personalization—such as different ways of

cooking—and the robot’s goal is to help the human achieve this personalized outcome.

The robots must infer what the human wants to do, and equally what they would

prefer not to do because it is too boring or repetitive, allowing the human to focus on

tasks that are creative and engaging. The robot observes the human through cameras,

predicts their intent, and collaborates accordingly.

Based on this example, the definition of the collaboration problem is as follows:

Definition 22 (Collaboration Problem) Robots interact in a world with humans in it.

Hence, all their interactions must be efficient and safe. This makes it impossible for them to

explore with the human in the loop, as is necessitated by traditional reinforcement learning.

We must be able to learn from good human-human interaction.

(as Figure 20.21 illustrates.)
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Figure 20.21: Alignment Problem

20.1.3 Key Challenge in IL

The key challenge in IL is jointly optimizing the performance and efficiency of both the (a)

agent-human interaction and (b) agent-real-world interaction.

Human

Robot

Real World

20.2 Challenge 1: Agent-Human Interactions

Setup: We are attempting to train a policy for a self-driving robotic race car [11].

• Data Collection: Collect human demonstration data (s∗1, a
∗
1), (s

∗
2, a

∗
2), ...

State Space(s): Occupancy Map (an observation about what parts of its envi-

ronment are occupied/obstacles, while which are not).

Action Space(a): Joystick Directions.

• Train a policy(classifier) π : Φ → ∆(A) (Select one out of a set of possible trajec-

tories that closely match what the human was trying to show)

We review the space of IL approaches for training such a policy.
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20.2.1 Behavior Cloning (BC)

The first method is behavior cloning [12] (i.e. directly regressing from states to actions).

This is the supervised learning / maximum likelihood estimation approach to IL.

Result: Empirically, BC often achieves a reasonable validation error, but during rollouts,

the car crashes quite frequently.

Reason: When the policy makes a small mistake and enters a state not seen in the expert

data (e.g., heading towards a wall), it lacks information on how to recover. It often defaults

to the most common action seen in demonstrations (e.g., “drive straight”), leading to a

crash. This is because the policy is only evaluated on the expert’s state distribution, not its

own induced state distribution. More formally,

Training Loss:
T−1∑
t=0

Est∼d
πE
t

[ℓ(st, π(st))] ̸= Test Loss:
T−1∑
t=0

Est∼dπt
[ℓ(st, π(st))] (20.128)

20.2.2 Dataset Aggregation (DAgger)

To mitigate this, we naturally gravitate towards a system that increases the coverage of the

learned policy to observe how the expert will respond in states that the learned policy is

likely to encounter. This involves querying the expert in all the states where the car visits

and then aggregating the expert’s labels for these instances with the original data.

Training Algorithm: DAgger

1. Roll out the current learner policy to sample robot states.

2. Collect post-hoc expert action labels at all robot states .

3. Aggregate the (learner state, expert action) data with that from previous rounds.

4. Update policy on aggregate data D:

min
π

Es,a∼D[I(π(s) ̸= aE)]. (20.129)

By training our policy on the states it actually visits rather than just the ideal ones visited

by the expert, we can eliminate compounding errors.

Naive BC: J(π)− J(πE) ≤ O(εT 2),

DAgger: J(π)− J(πE) ≤ O(εT ).

Practical Concern: While DAgger provides a nice performance bound, querying the expert

for every action that the learning policy visits can be expensive, risky (e.g., driving in the

real world), and hard to scale (as the environment becomes more complex).
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Figure 20.22: HG-DAgger: Interactive Imitation Learning with Human Experts

20.2.3 Human-Gated DAgger (HG-DAgger) [13]

Instead of querying the expert everywhere the learner goes, we can instead only have the

expert intervene when necessary, as in Figure 20.22.

Training Algorithm: HG-DAgger (i.e. learning form interventions):

1. Roll out the current learner policy to sample robot states.

2. Collect action labels at states where the expert intervened.

3. Aggregate the (learner state, expert action) data with that from previous rounds.

4. Update policy on aggregate data D:

min
π

Es,a∼D[I(π(s) ̸= aE)]. (20.130)

Concern: Though more efficient in terms of querying the expert, the agent would learn to

make a mistake and then recover from it, rather than avoiding the mistake in the first place.

20.2.4 Expert Intervention Learning (EIL)

An alterative perspective on expert interventions is that they tell us information about the

expert’s latent Q-value function. Specifically, we can model the expert as intervening at the

last moment before even they couldn’t fix the agent’s behavior. We could then try and infer

this QE-function from data of when and how they intervene. More formally,

min
QE∈Q

E(s,aE)∼Pexpert [ℓ(QE(s), aE)]

subject to: QE(s, a) ≤ δgood ∀(s, a) ∈ (I) (before expert intervenes)

QE(s, a) ≥ δgood ∀(s, a) ∈ (II) (after expert intervenes)

QE(s, a) ≤ min
a′

QE(s, a′) ∀(s, a) ∈ (III) (expert intervenes optimally)
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Note we’re using costs rather than rewards above – a low QE is a good thing. By inferring

such a QE, we also know what states we should avoid – those where minaQE(s, a) is big.

We can then augment the HG-DAgger loss (i.e. match the intervention action) with an

additional term to avoid the states where interventions happened – see paper for more.

20.3 Scaling to the Real World

When training a real self-driving car, one of the most important differences from our above

toy setup is the architecture used, which borrows from developments in language modeling.

These days, SDC policies are often transformers [14], as Figure 20.23 illustrates:

1. A Scene Encoder might be pretrained on vast amounts of (suboptimal) driving data.

We want to be able to forecast how all actors act, not just those who act optimally.

2. A Decoder is fine-tuned to predict future actions on good driving data.

Figure 20.23: MotionLM Architecture

However, demonstrations alone are often missing some information we’d like our SDC to be

trained on. First, demonstrations only tell you what to do – they don’t tell you what not to

do. Second, demonstrations don’t show recovery behavior from mistakes the expert did not

make themselves. We will now discuss how we can use ideas like EIL to address this.

When deploying a self-driving car in the real world, a human operator will sometimes need

to intervene and correct the behavior of the system. We can then triage such events and use

them to generate tests that specify what right / wrong behavior is in such situations. More

generally, we can think of interventions as automatic preference generation: we prefer not

to enter intervention states and we prefer what the expert did to what the robot was going

to do. We can then use this preference data to back out a reward function to apply RL to,

similar to the RL form Human Feedback pipeline we will discuss soon.
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Figure 20.24: The real-world analog of EIL is using interventions to define unit tests.

Figure 20.25: An RLHF Pipeline for Self-Driving.
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Part V

RL from Human Feedback
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Lecture 21: The Information Geometry of RLHF
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21.1 Outline

The lecture addresses three main points that characterizes Reinforcement Learning from

Human Feedback (RLHF) for language models (LM):

1. What is the fine-tuning problem?

A: Regularized maximum likelihood estimation (MLE).

2. End-to-end, what is the process of RLHF doing?

A: A two-stage process consisting of MLE over reward models followed by MaxEnt

(Entropy-Regularized RL) over policies.

3. What are direct alignment algorithms?

A: Algorithms that directly maximize likelihood over the policy space Π without explicitly

passing through the reward model space R.

21.2 Motivation: The Era of Fine-Tuning

Pretrained language models such as GPT-3/4 [15, 16] learn a wide range of capabilities and

statistical patterns from vast amounts of textual data mainly sourced from unstructured web

data. However, their behavior might not align perfectly with human intentions or desired

interaction styles (e.g., instruction following, helpfulness, harmlessness).

Fine-tuning, particularly using methods like RLHF [17], aims to ”steer” these base models

towards desired behaviors. This alignment process engineers the model’s outputs to better

match human preferences, leading to models like InstructGPT [17] or ChatGPT, which

exhibit significantly improved instruction-following and conversational abilities compared to

their base counterparts. The core problem we are trying to solve during this fine-tuning or

alignment phase can be framed as regularized maximum likelihood estimation. However, it

is really hard to write an effective reward function by hand.
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21.3 The Standard Three Steps of RLHF

The standard RLHF pipeline typically involves three stages:

1. Supervised Fine-Tuning (SFT): (Also referred to as Imitation Learning - IL). A

pre-trained language model is fine-tuned on a dataset of high-quality human demon-

strations or instructions. For various prompts, human labelers provide the desired

outputs. The model learns to mimic these expert responses (behavior cloning). Let

the policy after this stage be πSFT or πref.

2. Reward Model (RM) Training: Reward models are specific models that can asses

the quality of a model response or in this case how preferable a response is to a human.

While in theory, RMs can be any function that provides a score given a response, in

the case of RLHF, it is often initialized from the SFT model. This involves collecting

comparison data: for a given prompt, multiple outputs are generated (e.g., from the

SFT model), and human labelers rank these outputs or choose the best one (pair-

wise comparison). The reward model learns a scalar function rϕ(prompt, completion)

that assigns higher scores to preferred responses. This is essentially a classification or

regression problem aiming to model the human preference distribution.

3. Reinforcement Learning (RL) Optimization: The language model (initialized

from the SFT model) is further optimized using RL. The goal is to maximize the

expected reward predicted by the trained reward model rϕ. To prevent the policy from

deviating too much from the SFT model (which has good generative capabilities and

prevents reward hacking), a KL-divergence penalty term is added to the objective.

Common RL algorithms used include PPO (Proximal Policy Optimization)[18], but

other policy gradient methods (like REINFORCE[19], REBEL[20], GRPO[21]) can

also work effectively with proper tuning.

This process iteratively refines the language model to align better with human preferences

while retaining its core language capabilities.

21.4 Language Modeling as a Markov Decision Process

(MDP)

A language model predicts the probability of the next token wt given the preceding tokens

wt ∼ P (wt|wt−1wt−2 · · ·w1). We can think of language modeling as a special MDP.

• Prompts as Initial States (s0) We can regard prompts s0 as an initial state sampled
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from a distribution s0 ∼ p0. LMs are typically provided instructions as input which

initializes the language model to provide a sequence of continuation text.

• Next Token Predictions as Actions (at): Provided an initial state s0, a model

predicts the next token from a vocabulary / action space. We denote this as at ∈ A.

• Generated Tokens as State (st): At each successive step t, the sequence of tokens

thus far can be regarded as the current state on which a model is conditioned on to

predict the next token. This way, we can write any arbitrary state st as a concatenation

of the initial state and the sequence of actions (or tokens) predicted up to time step t,

st = [s0, a1, a2, . . . , at]. Thus, our state space is S = AH , where H is the horizon.

• The LM as the Policy (π): If we define generated tokens st−1 as state and the

next token at as action, the language model itself becomes the policy π(at|st−1) that

provides the probability distribution over the next token given the preceding sequence.

• Transitions (T ): The transitions are deterministic and known. Given state s and

action (token) a, the next state s′ is simply the concatenation s′ = [s, a].

T (s′ | s, a) =

{
1 if s′ = [s, a]

0 otherwise

This structure forms a tree rooted at the prompt s0.

• Horizon (H): A maximum generation length H is typically set which limits the

generated sequence to sH = [s0, a1, a2, . . . , aH ]. Generation can end earlier if an end-

of-sequence token is produced.

• Reward (r): In the RLHF context, the reward is typically assigned only at the end

of the generation (at horizon H or when an end-of-sequence token is generated). This

is because it is often hard to break down the quality of some text into a sum of per-

word scores. The reward function r(sH) or r(ξ) (where ξ = (a1, . . . , aH) is the full

completion) is given by the output of the trained reward model from Step 2.

Remark 26 (Special Characteristics of the Language MDP)

1. Dynamics are deterministic, known, and tree-structured.

2. Resets are easy: starting a new generation from any prefix (state) is trivial.

3. The reward function r(sH) is non-Markovian with respect to the token-level states st
(it depends on the entire sequence) and doesn’t naturally decompose per token.

Remark 27 Since the reward is only given at the end based on the complete trajectory

(completion), this MDP can be analyzed as a contextual bandit problem, where the context is

the prompt s0 and the “action” is the entire generated sequence ξ.
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Remark 28 (Fixed Horizon H) While language generations vary in length, using a fixed

horizon H is often practical. Models can generate a special “⟨eos⟩” token. Tokens generated

after “⟨eos⟩” can be considered padding and ignored, effectively handling variable lengths

within the fixed horizon framework.

21.5 Preference Fine-Tuning: The Data and Goal

Setup: The dataset D consists of tuples (s0, ξ
+, ξ−), where:

• s0 ∼ p0 is a prompt.

• ξ+ and ξ− are two completions generated for the prompt s0, often sampled from the

SFT policy πref (i.e., ξ+, ξ− ∼ πref(·|s0)).
• A human label indicates that ξ+ is preferred over ξ− (denoted ξ+ ≻ ξ−).

Optimization Problem: The ultimate goal of RLHF is to find a policy π that generates

completions aligning with human preferences, while staying “close” to the initial SFT policy

πref. This “closeness” is enforced by a (reverse) KL penalty. The fine-tuning problem can be

seen as finding a policy π⋆ that minimizes some loss on the preference data D, regularized

by its distance to πref:

π⋆ = argmin
π∈Π

DKL(D||π) + βDKL(π||πref) (21.131)

where LD(π) measures how well π explains the preferences in D (i.e., data likelihood), and

β controls the strength of prior regularization. Intuitively, the reason we need regularization

to a prior is that D often doesn’t cover all possible generations, which means we don’t want

our policy to start generating text that we haven’t received human feedback on.

Pro vs SFT: Collecting preference data is often easier and cheaper than asking experts to

write high-quality demonstrations.

Con vs. SFT: Each data point provides only relative information (e.g., 1 bit for pairwise

comparison), which is much less informative than a full demonstration.

21.6 Two-Stage RLHF: Information Geometry View

Let’s analyze the standard two-stage process (RM training + RL optimization) using con-

cepts from the field of information geometry.
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21.6.1 Stage 1: Reward Modeling as MLE (FKL Projection)

We typically model human preferences using the Bradley-Terry (BT) model. It assumes

an underlying latent reward function r shared across the entire population such that the

probability of preferring ξ1 over ξ2 given prompt s0 is:

Pr(ξ1 ≻ ξ2|s0) = σ(r(ξ1)− r(ξ2)) (21.132)

where σ(x) = 1/(1 + e−x) is the sigmoid function.

Remark 29 This model assumes consistent preferences across the population, which fre-

quently does not hold in practice. In such situations, intransitivity might occur from prefer-

ence aggregation, which means that no reward function can explain the observed preferences.

We will discuss how to deal with this issue in a later lecture.

Also, let PD(ξ1 ≻ ξ2|s0) denote the empirical probability (frequency) in the dataset D that

ξ1 was preferred over ξ2 for prompt s0 by our pool of raters..

A reward model is nothing but a classifier. Training the reward model rϕ (parameterized

by ϕ, often within a space R) is performed by maximizing the likelihood of the observed

human preferences in D. This is equivalent to minimizing the forward KL divergence from

the empirical preference distribution PD to the model’s predicted preference distribution Prϕ :

r̂mle = r∗ϕ = argmin
rϕ∈R

Es0∼D
[
DKL(PD(· ≻ ·|s0)||Prϕ(· ≻ ·|s0))

]
(21.133)

= argmax
rϕ∈R

E(s0,ξ+,ξ−)∼D
[
logPrϕ(ξ+ ≻ ξ−|s0)

]
(21.134)

= argmax
rϕ∈R

E(s0,ξ+,ξ−)∼D
[
log σ(rϕ(ξ+)− rϕ(ξ−))

]
(21.135)

Observe that this is precisely the objective function for training a classifier using logistic

regression on the preference pairs. From an information geometry perspective, this MLE step

is performing a Forward KL projection (FKL) of the empirical preference distribution

PD onto the space of realizable preference distributions induced by reward models in R.

21.6.2 Stage 2: RL Optimization as MaxEnt RL (RKL Projection)

In the second stage, we use the learned reward model r̂mle to optimize the policy π (param-

eterized by θ, within a space Π). The objective is to maximize the expected reward under

the policy π, while regularizing with the reverse KL divergence to the reference policy πref

(usually the SFT policy) to prevent reward hacking caused by limited D coverage:

π̂rlhf = argmax
π∈Π

Eξ∼π(·|s0) [r̂mle(ξ)]− βDKL(π(·|s0)||πref(·|s0)) (21.136)
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Here, β is a hyperparameter controlling the regularization strength. The KL divergence term

is calculated over entire sequences ξ:

DKL(π||πref) = Eξ∼π

[
log

π(ξ|s0)
πref(ξ|s0)

]
= Eξ∼π

[
H∑

h=1

log
π(ah|sh−1)

πref(ah|sh−1)

]
(21.137)

This is a standard objective in entropy-regularized RL or “Soft RL”. Recall from a past

lecture that the optimal policy π⋆ for this objective has the form:

P⋆
r̂mle

(ξ|s0) =
1

Z(s0)
Pref(ξ|s0) exp

(
1

β
r̂mle(ξ)

)
=

H∏
h

π⋆
r̂mle

(ah|sh), (21.138)

where Z(s0) is the partition function ensuring the distribution sums to 1 over all possible

sequences ξ starting from s0, and the RHS equality uses the fact that the dynamics are

deterministic. We don’t discuss the proof in lecture but it can be shown that solving this

soft RL problem over some policy class Π is equivalent to projecting P⋆
r̂mle

onto the space of

trajectory distributions Pπ induced by π ∈ Π under the reverse KL metric:

π̂rlhf = argmin
π∈Π

DKL(Pπ||P⋆
r̂mle

) (21.139)

End-to-End Summary: The standard two-stage RLHF process first performs an FKL

projection from the data D to the reward space R (MLE for r̂mle), and then an RKL pro-

jection from the reward-induced target distribution P⋆
r̂mle

to the policy space Π (MaxEnt RL

for π̂rlhf). We visualize this process in Figure 21.26.

21.7 Direct Alignment Algorithms (e.g., DPO)

Direct Alignment Algorithms aim to bypass the explicit reward modeling step (Stage 1) and

directly optimize the policy π using the preference data D via offline maximum likelihood

estimation. Direct Preference Optimization (DPO) is a prominent example.

The core idea of DPO is to re-express the reward function in terms of the optimal policy

and the reference policy. Recall the form of the soft optimal policy π⋆ for a given reward r:

P⋆
r(ξ|s0) =

1

Z(s0)
Pref(ξ|s0) exp

(
1

β
r(ξ)

)
(21.140)

We can take a log on both sides and and rearrange to solve for r(ξ):

logP⋆
r(ξ|s0) = logPref(ξ|s0) +

1

β
r(ξ)− logZ(s0) (21.141)
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Policies Rewards

Π R

D

π̂mle

π̂rlhf

r̂mle

Figure 21.26: Geometric Interpretation of RLHF and DPO (Adapted from [22]).

r(ξ) = β

(
log

P⋆
r(ξ|s0)

Pref(ξ|s0)

)
+ β logZ(s0) (21.142)

Since P⋆
r(ξ|s0) =

∏
h π

⋆(ah|sh−1) and Pref(ξ|s0) =
∏

h πref(ah|sh−1) due to the deterministic

dynamics, we can expand to write terms using token-level probabilities:

r(ξ) = β

H∑
h=1

(log π⋆(ah|sh−1)− log πref(ah|sh−1)) + β logZ(s0) ≜ rπ(ξ). (21.143)

Thus, we can express the reward function that makes a policy soft optimal in terms of said

policy by inverting the MaxEnt RL equations. So, while soft value iteration lets us go from

r to π⋆, DPO tells us that logistic regression lets us go in the reverse direction.

Remark 30 (Your Language Model is Secretly a Reward Model) One can show that

the optimal policy for the entropy-regularized RL objective using this implicit reward rπ is
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precisely the policy π itself.

P⋆
rπ(ξ) ∝ exp(rπ(ξ)) (21.144)

∝ exp

(
H∑
h

log π(ah|sh) + logZ(s0)

)
(21.145)

∝ exp

(
H∑
h

log π(ah|sh)

)
(21.146)

∝
H∏
h

π(ah|sh). (21.147)

Thus, if we optimize over rπ, we get the corresponding soft-optimal policy π “for-free”.

The DPO Objective: DPO substitutes this implicit reward function rπ directly into the

Bradley-Terry likelihood objective used for reward modeling (i.e. Stage 1), cancelling out

the partition function as both trajectories share the same prompt:

π̂dpo = argmax
π∈Π

E(s0,ξ+,ξ−)∼D
[
log σ(rπ(ξ+)− rπ(ξ−))

]
= argmax

π∈Π
E(s0,ξ+,ξ−)∼D

[
log σ

(
β log

π(ξ+|s0)
πref(ξ+|s0)

− β log
π(ξ−|s0)
πref(ξ−|s0)

)]
This results in a single-stage optimization problem where we directly maximize the likelihood

of the preference data under the policy π without any RL / on-policy sampling.

Information Geometry View of DPO: DPO performs a forward KL projection (FKL)

directly from the empirical preference distribution PD onto the policy space Π. It bypasses

the intermediate reward model space R.

• Standard RLHF: D FKL (MLE)−−−−−−−→ R RKL (MaxEnt RL)−−−−−−−−−−−→ Π

• DPO: D FKL (MLE)−−−−−−−→ Π

Key Point: While both methods aim to align the policy with preferences, the resulting

policies π̂rlhf and π̂dpo are not necessarily identical, as we discuss in subsequent lectures.
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22.1 Outline

1. What assumption on the preference dataset did we make in the DPO derivation and

what happens when it breaks?

A: Full coverage of D. Without it, we can’t control the RKL.

2. When are two-stage RLHF and DPO equivalent?

A: When Π and R are isomorphic and all projections are exact.

3. Why does two-stage RLHF work much better in practice?

A: RLHF only has to search over policies (generators) that are optimal for simple

rewards (verifiers) rather than over all of Π, which requires less data.

22.2 Recap

Recall the formulas for forward and reverse KL divergence.

• FKL: minpDKL(q||p) = minp

∑
x q(x) log

(
q(x)
p(x)

)
(MLE)

• RKL: minpDKL(p||q) = minp

∑
x p(x) log

(
p(x)
q(x)

)
(Soft RL)

FKL is mode-covering while RKL is mode-seeking. To see why, imagine we tried fitting a

single Gaussian distribution to a bimodal sum of Gaussians. FKL doesn’t want q(x)
p(x)

to get

too big, so it ensures p(x) is never too small when q(x) is large. This results in it roughly

fitting an “average” of the sum of Gaussians. However, RKL doesn’t want p(x)
q(x)

to get too big,

so it ensures p(x) is never too large when q(x) is close to zero. This results in it just trying

to fit to one of the modes. Note that both of these extremes (average of the two modes from

FKL vs. just one mode from RKL) result in a very high divergence in the other direction.

In RLHF, we often care about mode selection (mode-seeking) more than mode covering (i.e.

we’d prefer to do one thing well rather than two things poorly).
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x

True p(x) (bimodal) Reverse KL (q(x) mode-seeking) Forward KL (q(x) mode-covering)

Figure 22.27: Forward KL covers both modes while reverse KL selects one when trying to

fit a bimodal mixture of Gaussians with a single Gaussian.

Last lecture, we described two methods for learning from preference feedback:

1. Two-stage RLHF: learn a reward model r̂mle via logistic regression over D. MLE

corresponds to minimizing the FKL. Then, learn a policy via soft RL on the RM:

π̂rlhf = arg max
π∈Π

Eξ∼π [r̂mle(ξ)] + DKL(π||πref). (22.148)

As discussed last time, soft RL corresponds to minimizing the RKL.

2. One-step Direct Alignment (e.g. DPO): directly learn a policy over D via MLE (≈
logistic regression over the space of policies).

In practice, most if not all frontier models use the two-stage procedure. However, it is

significantly more computationally intensive as it requires sampling from the policy and

performing finicky policy gradient updates. The key question we will focus on for the rest

of this lecture is exploring when this extra complexity in implementation is beneficial.

22.3 DPO Breaks under Partial Coverage

As we will now discuss, DPO implicitly assumes full coverage of the preference dataset D,

an assumption that is rarely if ever true in practice. Without this assumption, DPO cannot

control the RKL. Intuitively, this is because RKL involves an on-policy expectation, which

can only be estimated if D covers all places the learner might visit.

More explicitly, suppose we had three possible completions ξ1, ξ2, ξ3 with probabilities

0.5, 0.5, 0 under πref. Furthermore, assume that our human labeler always prefer ξ1 ≻ ξ2.

First, let’s consider the two-stage procedure. When fitting r̂mle on D, we would want to
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Policies Rewards

Π R

D

π̂mle

π̂rlhf

r̂mle

≈ Logistic Regression over Π Logistic Regression over R

Figure 22.28: We visualize the two-stage and one-stage approaches to PFT.

assign a much higher score to ξ1 than to ξ2. However, because we never see any preference

data with ξ3, we could erroneously assign it a high reward. For example, r̂mle = [1, 0, 10] has a

high Bradley-Terry likelihood. However, the RKL term blows up if we place any probability

mass on ξ3, so π̂rlhf wouldn’t generate ξ3 and therefore awards reward hacking.

Now, let us consider applying DPO to this problem. Because πref has the same probability

of generating either ξ1 or ξ2, we can drop the reference probabilities from the DPO loss and

end up with a vanilla logistic regression objective:

arg max
π∈Π

ED

[
log σ

(
H∑
h

log
π(a+h |s

+
h )

πref(a
+
h |sh+)

− log
π(a−h |s

−
h )

πref(a
−
h |s

−
h )

)]
(22.149)

= arg max
π∈Π

ED

[
log σ

(
H∑
h

log π(a+h |s
+
h )− log π(a−h |s

−
h )

)]
(22.150)

= arg max
π∈Π

log σ

(
H∑
h

log π(a1h|s1h)− log π(a2h|s2h)

)
. (22.151)

Observe this loss function does not constrain the probability of generating ξ3 in any way and

there is no on-policy RKL correction to fix it. In summary, DPO doesn’t regularize to πref

properly in the partial coverage setting, and can therefore produce OOD responses.
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22.4 When are two-stage RLHF and DPO equivalent?

As we will now argue, when the space of policies Π is isomorphic to the space of reward

models R and all projections are exact, DPO and RLHF will produce the same policy (i.e.

π̂mle = π̂rlhf). For simplicity, we will assume there is no prior regularization, but a more

general version of the following claim can be proved under slightly stronger assumptions.

Proof: First, we observe that because we are minimizing the same functional over isomor-

phic classes, we know that π̂mle and r̂mle must achieve the same loss value:

ED

[
log σ

(
H∑
h

(
log π̂mle(a

+
h | s

+
h )− log π̂mle(a

−
h | s

−
h )
))]

= ED
[
log σ

(
r̂mle(ξ

+)− r̂mle(ξ
−)
)]

.

(22.152)

Assuming uniqueness of minimizers for simplicity, we then know that

∀ ξ ∈ Ξ, rπ̂mle
(ξ) =

H∑
h

log π̂mle(ah | sh) = r̂mle(ξ). (22.153)

Next, we recall that soft RL can be written as an RKL projection onto Π and substitute

r̂mle(ξ) for rπ̂mle
(ξ):

π̂rlhf = arg min
π∈Π

DKL (Pπ ∥P⋆
r̂)

= arg min
π∈Π

DKL (Pπ ∥Prπ̂)

= π̂mle

The last step above uses the DPO isomorphism we discussed last lecture.

If you’ve taken a statistics class before, you might have heard this stated more formally as

MLE is invariant to reparameterization. Interestingly enough, we’re roughly in the isomor-

phic classes setting for practical applications of RLHF to LLMs. This is because both the

policy and the reward model are fine-tuned from the same SFT checkpoint. Specifically, to

get an RM, one removes the final softmax from the SFT policy and then adds a linear layer.

The above result should be surprising to you – we’ve proved theoretically that there should be

no benefit to RL in fine-tuning but practically, we see everyone using RL-based methods. We

will now focus on reconciling this theory-practice gap via the use of controlled experiments.
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22.5 Why is RLHF > DPO in Practice?

We will focus on the task of summarization of Reddit posts, using models from the Pythia

family pre-trained on the Pile. To eliminate confounders, we will try to equalize as many

things as possible between offline and online PFT:

1. We will use the same dataset to train both policies and reward models.

2. We will start from the same SFT checkpoint to train both.

3. We will use the same optimizer (DPO) for both online and offline PFT with the same

hyperparameters.

By online DPO, we mean sampling from the policy, ranking the samples with the reward

model, and using the top and bottom of the list as a new preference pair for a DPO procedure.

Thus, the only difference between the offline and online PFT procedures is the data passed

to them – the offline algorithm learns directly from the human preferences, while the online

procedure uses the inputed preferences generated by reward model rankings.

Key Takeaways While maintaining the same experimental configuration (same initial

checkpoint, training data, objective function, same gradient steps) online PFT robustly

out-performs offline PFT. See [22] for full results.

22.5.1 Hypotheses for the Online-Offline Gap

We now explore and refute several hypotheses for the online-offline performance gap – see

[22] for the complete list and more comprehensive experiments.

1. Hypothesis 1: Intrinsic Value of On-Policy Feedback. If the RM was able

to give us new information during on-policy sampling, we might hope to out-perform

the offline algorithm. This is the heart of the classic separations between online and

offline RL. However, we do not observe any ground-truth reward labels during on-policy

sampling – the labels are merely imputed by an RM trained on the same data as the

offline policy. Furthermore, due to the data processing inequality, we cannot create

any new information (i.e. bona fide new human preferences) via on-policy sampling.

2. Hypothesis 2: Failure of Offline Regularization. As we discussed above, offline

algorithms like DPO need strong assumptions to properly regularize to the prior. While

this is true in general, we used DPO as our optimizer for both the online and offline

experiments. Thus, this fact cannot explain the preceding results.

3. Hypothesis 5: RMs generalize better OOD than Policies. Intuitively, if our

RM generalizes better OOD than the implicit RM rπ we train in DPO-like approaches,
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Figure 22.29: On problems with a generation-verification gap, the first stage of RLHF can

be thought of picking a relatively simple reward model r̂sim ∈ Rsim. The secondary RL

step will pick a policy that is soft-optimal for this relatively simple verifier. Thus, end to

end, the two-stage RLHF procedure only needs to look at policies that are soft-optimal for

relatively simple verifiers Π(Rsim), rather than across all of Π like vanilla maximum likelihood

estimation. This provides a statistical benefit (i.e., fewer samples required for learning).

we might expect online PFT perform better. This is true (as measured in terms of Best-

of-N performance), but is best explained by the fact that RMs also generalize better

in-distribution (i.e. they have better validation BT likelihoods). Intutively, having

better margins in distribution is often correlated with better OOD generalization,

similar to the arguments for maximizing the margin of an SVM. However, this just

kicks the can down the road – we haven’t explained why RMs should have better BT

validation likelihoods ID than implicit RMs. It isn’t obvious they should, given we’re

minimizing the same loss function over similar function classes using the same dataset.

22.5.2 Generation-Verification Gaps in RLHF

We now discuss an alternative hypothesis grounded in the phenomenon of generation-verification

gaps : that for many problems, it is easier to check that one has the right answer rather than

to generate it in the first place. For example, checking if a Sudoku puzzle is correctly solved

is much easier (just check every row, column and square) rather than generating a complete

solution (requires an exponentially large search). A bit more formally, this is what problems

in NP but not P are like. In RL, policies are generators while reward models are verifiers. If

we believe that the underlying reward function for a problem is simpler than the correspond-

ing soft-optimal policy, this means that it should take less data to learn the former. Then,
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the second RL stage of RLHF only picks policies that soft-optimal for the relatively simple

learned verifier. Thus, end to end, two-stage RLHF only has to look at the subset of policies

that are soft-optimal for relatively simple verifiers, rather than across all policies, which can

require much more preference data to search across. This hypothesis is saying there is a sta-

tistical separation between online and offline PFT. We note in passing that this hypothesis

is analogous to the statistical benefit of inverse RL we discussed where the learner has a

reduction in search space to just those policies that are on the Pareto frontier. We visualize

this reduction in effective hypothesis class size in Figure 22.29. Observe that this hypothesis

explains why there should still be an online-offline performance gap in the isomorphic classes

setting. Furthermore, it explains why RMs generalize better ID than implicit RMs, as one

is attempting to learn a simpler function in the former case and therefore should require less

data to do so (via one of many arguments from statistical learning theory).

[22] provide evidence that the summarization problem we consider has a GV-gap by noting

relatively small reward models can accurately rank samples from relatively large policy.

Furthermore, they observe that using an RM that is much larger than the generating policy

does not improve upon the performance of an RM of the same size as the generating policy.

They also discuss how this hypothesis explains all other experimental results in their paper.

To further stress-test the hypothesis, they then perform experiments where they eliminate the

GV-gap and see that offline and online PFT collapse to the same performance, as predicted

by the information-theoretic picture we started off the lecture with.
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23.1 Recap

Recall that in RLHF, we’re trying to solve the following KL-regularized RL problem:

J(π) = Ex∼D
[
Eτ∼π(·|x)r(x, τ)− βKL(π(·|x) ∥ πref(·|x))

]
, (23.154)

where

• x is the input context (prompt),

• τ is the sequence of actions / tokens or response generated by the policy π,

• r(x, τ) is the reward associated with the prompt-response pair (x, τ),

• β is a scalar factor controlling KL penalty strength,

• πref is the reference policy.

As we discussed previously, the optimal policy π⋆ has the following closed form:

π̂(τ |x) ∝ πref(τ |x) · exp

(
r(x, τ)

β

)
. (23.155)

23.1.1 Recap: DPO

DPO takes the closed-form solution above and reparameterizes the reward using the policy.

It models the reward difference in terms of the policy. The DPO training objective is:

arg max
θ

∑
x,τ,τ ′,z

ln
1

1 + exp
(
−β
(

ln πθ(τ |x)
πref(τ |x)

− ln πθ(τ ′|x)
πref(τ ′|x)

)) , (23.156)

where

• x is a prompt,

• τ , τ ′ are responses to x,
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• z ∈ {−1, 0, 1} labels preference: z = 1 if τ is preferred to τ ′,

• πθ(τ |x) is the probability of generating τ given x under policy πθ,

• πθref(τ |x) is the probability under the reference policy πref.

DPO’s performance is often weaker than Reward Model (RM) + PPO due to the generation-

verification gap: evaluating a response is often easier than generating one. Furthermore,

online RL approaches allow one to use state-of-the-art RMs (e.g., from RewardBench) trained

by the community and train the policy on prompts unseen in the preference data.

Main Question: PPO is computationally expensive, requiring storing four large

models in memory: π, πref, the reward model r, and the critic / value function V .

Can we develop a more efficient and potentially more effective RL algorithm?

23.2 Mirror Descent

Mirror Descent is a well-studied no-regret algorithm that most, if not all, popular RL al-

gorithms can be thought of as approximating. 6 We will begin by discussing this idealized

algorithm before describing how best to approximate it. Given some reward function r(x, τ),

RL focuses on finding some policy π that maximizes expected reward:

max
π

Ex,τ∼π(.|x)[r(x, τ)]. (23.157)

At each iteration, t, mirror descent attempts to solve the above via the following update:

πt+1 = arg max
π

Ex,τ∼πt(.|x) [r(x, τ)− βKL(π(·|x) ∥ πt(·|x))] . (23.158)

Observe that this is nothing but the KL-regularized / MaxEnt RL problem we’ve been

studying, but with πref = πt (i.e. we regularize to the last policy we learned). Pattern

matching from the above, we know that the closed-form solution to the above problem is

πt+1(τ |x) =
πt(τ |x) exp(r(x, τ)/β)

Z(x)
, (23.159)

where Z(x) is the normalization constant. We can expand out this recursion over T iterations:

πt+T (τ |x) ∝ πt(τ |x) exp(
T∑
i=1

r(x, τ)/β) ∝ πref(τ |x) exp(
t+T∑
i=1

r(x, τ)/β) (23.160)

6In fact, the Follow The Regularized Leader algorithm we discussed extensively in earlier lectures is

equivalent to mirror descent for a particular choice of the regularizer.
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This update should be intuitive: we’re steadily up-weighting high-reward trajectories and

down-weighting the prior πref. Observe that this down-weighting implies that we may even-

tually drift away from the reference policy, but this is acceptable if we trust our reward

model. We don’t prove in lecture but exact mirror descent has a fast rate of O(1/T ).

While conceptually elegant, exact mirror descent is difficult to implement if π and r are neural

networks (transformers) – exactly computing the above product for all τ (i.e. all prompt

completions) is computationally infeasible. Thus, we will now discuss how to approximate

this idealized update via a simple, square-loss regression.

23.3 Reparameterization Trick and REBEL

Taking a log on both sides of the above expression and re-arranging terms, we get:

r(x, τ) = β

(
ln

πt+1(τ |x)

πt(τ |x)

)
+ lnZ(x) (23.161)

where Z(x) = Eτ∼πt(.|x)[exp(r(x, τ)/β)]. Akin to DPO, to eliminate the partition function,

we can consider the relative reward between two completions to the same prompt x:

r(x, τ)− r(x, τ ′) = β

(
ln

πt+1(τ |x)

πt(τ |x)
− ln

πt+1(τ
′|x)

πt(τ ′|x)

)
. (23.162)

For a small, tabular problem, we could attempt to solve the above equation exactly. Unfortu-

nately, this is infeasible at the scale of language models. Thus, we will minimize the squared

difference between the LHS and RHS of the above expression, giving us the following:

πt+1 = arg min
π

Ex,τ,τ ′∼πt(.|x)

β
(

ln
π(τ |x)

πt(τ |x)
− ln

π(τ ′|x)

πt(τ ′|x)

)
︸ ︷︷ ︸

Regressor

− (r(x, τ)− r(x, τ ′))︸ ︷︷ ︸
Relative reward


2

,

(23.163)

where τ, τ ′ are sampled independently from the latest policy πt(·|x). 7 We call this the

REBEL (REgression to RElative REward Based RL) update. Observe that if we were able

to perfectly minimize this objective to zero and πt has full support for all x, we would recover

the exact mirror descent update. One can still prove strong guarantees with approximate

minimization via reduction to supervised learning, as is discussed further in the paper.

7One can instead compare the current policy to samples from some baseline distribution, as discussed in

the full paper. This could be suboptimal data from the internet or SFT data.
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23.4 Differences between REBEL, DPO, and PPO

It is worth pausing for a moment to consider the differences between the three RLHF algo-

rithms we’ve discussed in this course.

1. DPO: Uses finite, offline preference data. Can’t take advantage of reward models or

generation-verification gaps. Simple, supervised learning-based update.

2. PPO: Can use an arbitrary RM and optimize on unseen prompts. Complex update,

requiring attention to detail in terms of implementation (e.g. clipping, baselines, GAE)

and having four separate models in memory.

3. REBEL: Achieves the best of both worlds: simple, regression based update akin to

DPO. Doesn’t require critic network like PPO. Can take advantage of arbitrary RMs.

Intuitively, one can think of REBEL as DPO but with a reward model (that may or may

not be learned from human preference data).

23.5 Connecting REBEL to Other Algorithms

To recap, REBEL minimizes the following least squares loss problem at each iteration:

ℓt(θ) = Ex,τ,τ ′∼πθt
(.|x)

[
β

(
ln

πθ(τ |x)

πθt(τ |x)
− ln

πθ(τ
′|x)

πθt(τ
′|x)

)
− (r(x, τ)− r(x, τ ′))

]2
(23.164)

Let us consider what happens when we approximately minimize the above loss function.

23.5.1 One Step of Gradient Descent

Consider taking a single step of gradient descent in the above objective, i.e.

θt+1 = θt − η∇θlt|θt (23.165)

For some fixed (x, τ, τ ′), the gradient at θ = θt is

∇θl(θt) = β (∇θ lnπθt(τ |x)−∇θ lnπθt(τ
′|x)) (r(x, τ)− r(x, τ ′)). (23.166)

Observe that this recovers the REINFORCE Leave One Out (RLOO) update (i.e. REIN-

FORCE, but using the reward of the other sample in the batch as a baseline).

139



23.5.2 One Step of Gauss-Newton

To take a Gauss-Newton (GN) step, we first approximate the non-linear part inside the

square via a first-order Taylor expansion at θt:

ln
πθ(τ |x)

πθt(τ |x)
− ln

πθ(τ
′|x)

πθt(τ
′|x)
≈ (∇ ln πθt(τ |x)−∇ lnπθt(τ

′|x))
T

(θ − θt). (23.167)

We then plug this linear approximation back into the least squares problem:

θt+1 = arg min
θ

Ex,(τ,τ ′)∼πθt
(·|x)

[(
(∇ ln πθt(τ |x)−∇ lnπθt(τ

′|x))
T

(θ − θt)− (r(x, τ)− r(x, τ ′))
)2]

This is precisely the “regression view” of the Natural Policy Gradient (NPG) we discussed

many lectures ago! Thus, NPG can be seen as an approximation of the REBEL update.

23.5.3 Other Domains

REBEL can be applied to other RL problems, such as continuous control or fine-tuning

image diffusion models. While we assumed deterministic dynamics in the above derivation,

if we expand the probability of a trajectory as

π(ζ|s0) =
H−1∏
h=0

π(ah|sh)P (sh+1|sh, ah), (23.168)

observe that

ln
π(ζ|s0)
πold(ζ|s0)

=
H−1∑
h=0

ln
π(ah|sh)

πold(ah|sh)
, (23.169)

i.e. that the dynamics cancel out as they are evaluated along the same trajectory. This could

be useful in a multi-turn dialog setting, where the person’s responses to what the agent says

are stochastic. For such a problem, each action may more naturally correspond to an entire

response, rather than a token. See the follow-up paper, REFUEL, for more information.

The REBEL algorithm can also be adapted to use a critic Q (rather than a reward model),

which leads to a similar update to Soft Actor Critic (SAC):

min
π

Es,a∼πt(·|s)

[(
β

(
ln

π(a|s)
πt(a|s)

− ln
π(a′|s)
πt(a′|s)

)
− (Q(s, a)−Q(s, a′))

)2
]
, (23.170)

where a and a′ are sampled independently from the current policy πt(·|s). This can help for

longer horizon problems for which more precise credit assignment is required. If one doesn’t
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want to explicitly train a critic, one can instead simply roll out the policy from the state s

after taking some action a and observe the sum of rewards accumulated over the rest of the

episode. This is an unbiased, Monte-Carlo estimate of the desired Qπ(s, a) value. Recall that

these sorts of “resets” are free in text problems as they are just generating from a prefix.
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24.1 Outline

We will cover two points in today’s lecture:

1. When is the Bradley-Terry assumption inaccurate and what happens to online/offline

PFT as a result?

A: BT is violated when a reward function can’t explain (aggregate) preferences, leading

to mode collapse in RLHF.

2. What is a more robust criterion for preference aggregation and how can we efficiently

optimize it?

A: The minimax winner doesn’t assume transitivity of preferences. We can use a self-

play algorithm to compute it.

24.2 When is Bradley-Terry assumption inaccurate?

24.2.1 Preference Matrix

Given some set of human preferences recorded in a dataset D, we can transform them into

a preference matrix P where each entry P(ξi ≻ ξj) is the empirical probability that

generation ξi is preferred over ξj:

P(ξi ≻ ξj) ≜ PD(ξi ≻ ξj). (24.171)

From this definition, we can back out a few key properties of P :

1. All elements on the diagonal must be 0.5.

2. Elements across the diagonal must sum to 1 (as an event and its compliment have a

probability that sums to 1). This property will be key later.

Above, we give an example of the translation from dataset D to matrix P . For this particular

preference matrix, we can back out a reward function that rationalizes it (i.e. that the raters
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ξ1 ≻ ξ2

ξ1 ≻ ξ3

ξ2 ∼ ξ3D

P ξ1 ξ2 ξ3
ξ1 0.5 1 1

ξ2 0 0.5 0.5

ξ3 0 0.5 0.5

Figure 24.30: Observe how, without loss of generality, we can translate human preferences

(left) into a matrix (right). The same is not true for reward functions.

could have had in their heads to guide the choices they made). Assuming our raters make

choices according to the Bradley-Terry model of preferences, we know that the underlying r

must satisfy the following set of constraints:

r(ξ1) > r(ξ2) & r(ξ1) > r(ξ3) & r(ξ2) = r(ξ3). (24.172)

One such reward function is r = [1, 0, 0]. Unfortunately, it is not always possible to collapse

a preference matrix into a reward vector. For example, if we instead had the following three

constraints, there is no scalar reward function that simultaneously satisfies them all:

r(ξ1) > r(ξ2) & r(ξ1) < r(ξ3) & r(ξ2) > r(ξ3). (24.173)

This is known as intransitivity – a lack of a global ordering over completions. We will now

discuss where intransitivity comes from in practice and how to handle it.

24.2.2 Violations of Bradley-Terry

Recall that the Bradley-Terry model states that the probability of preferring ξi over ξj is:

P (ξi ≻ ξj) =
exp(r(ξi))

exp(r(ξi)) + exp(r(ξj))
(24.174)

BT assumes that population-level preferences can be explained by a single reward, shared

function. However, this assumption breaks when preferences are intransitive (e.g. ξ1 ≻
ξ2 ≻ ξ3 ≻ ξ1). This happens mainly due to the following reasons:

• Intransitivity in Individual Preferences: An individual may judge different pairs

of samples on different features/criteria (e.g. we compare apples based on color but

apples and oranges based on sweetness).

• Intransitivity from Preference Aggregation: Even if each individual has con-

sistent preferences, aggregating preferences across a group of individuals can lead to

intransitivity (e.g. rock-paper-scissors-like scenarios).

For the rest of the lecture, we will focus on the second case, where the intransitivity arises

from the aggregation of preferences across multiple individuals.
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24.2.3 Intransitivity from Preference Aggregation

In real-world scenarios, when collecting a preference dataset, for any single individual, we

usually only have preferences over a small subset of pairs of prompt completions.

We can turn this data into a partial preference matrix P , which has unknown entries:

ξ1 ≻ ξ2

D

P ξ1 ξ2 ξ3
ξ1 0.5 1 ?

ξ2 0 0.5 ?

ξ3 ? ? 0.5

Figure 24.31: A limited number of comparisons from a single user can lead to a partially

completed preference matrix. The question marks indicate pairs for which we have no data.

Even if the known entries are consistent with a reward function (e.g., r(ξ1) > r(ξ2)), the full

matrix might still exhibit intransitivity once the missing entries are filled in with data from

other users. We will walk through an example of this now, inspired by Rock Paper Scissors.

Rock ≻ Scissors Paper ≻ Rock Scissors ≻ Paper

P1 R P S

R 0.5 ? 1

P ? 0.5 ?

S 0 ? 0.5

P2 R P S

R 0.5 0 ?

P 1 0.5 ?

S ? ? 0.5

P3 R P S

R 0.5 ? ?

P ? 0.5 0

S ? 1 0.5

Figure 24.32: Consider aggregating the preferences of three raters, each of which only com-

pares two of the three options for us. This will lead to the appearance of intransitivity.

Aggregating these preferences can result in the following matrix:

Pagg Rock Paper Scissors

Rock 0.5 0 1

Paper 1 0.5 0

Scissors 0 1 0.5

Pagg exhibits intransitivity: Rock ≻ Scissors, Scissors ≻ Paper, and Paper ≻ Rock. Thus,

there can be no reward function r⋆ that can explain these preferences simultaneously.
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24.2.4 No r⋆ Leads to Mode Collapse in RLHF

When the underlying aggregated preferences P are intransitive, no single reward function

r⋆ can perfectly capture them. Standard RLHF methods attempt to find the Maximum

Likelihood Estimate (MLE) reward function r̂mle under the Bradley-Terry model. However,

this r̂mle will be a poor fit for the true population preferences, leading to mode collapse.

Consider a slightly different intransitive preference matrix (rows preferred over columns):

P Rock Paper Scissors

Rock 0.5 0.7 0

Paper 0.3 0.5 1

Scissors 1 0 0.5

Figure 24.33: Another set of intransitive preferences. Row sums are 1.2, 1.8, 1.5.

Assume we have a uniform reference policy – i.e. π̂ref = [1
3
, 1
3
, 1
3
]. In such a situation,

loosely speaking, we would expect fitting a BT reward model via MLE would lead to higher

values on the choices corresponding to rows with higher sums (i.e. the choices that have

higher probabilities of being preferred by the raters on average). For simplicity, let’s assume

r̂mle = [1.2, 1.8, 1.5]. Next, recall that the soft RL policy has the form

π̂RLHF ∝ πref · exp

(
1

β
r̂mle

)
. (24.175)

This means that even if the reward model puts a slightly higher value on something (e.g.

paper), the resulting soft-optimal policy will choose paper significantly more often. This

leads to mode collapse: the RLHF policy the flawed r̂mle and primarily generates outputs

corresponding to the highest estimated reward (Paper), neglecting other valid or even su-

perior options in certain contexts (like Rock, which beats Scissors, or Scissors, which beats

Paper). The policy fails to capture the cyclic nature of the true preferences. In practice, this

can correspond to ignoring minority preferences and instead only generating completions

preferred by the majority, which can be undesirable in a variety of situations.

We conclude by noting that beyond the toy instance above, this problem becomes increasingly

severe as the size of the output space Ξ grows larger, as it becomes increasingly unlikely that

there is a global ordering over all natural language prompt completions all raters agree with.

24.3 Beyond Bradley-Terry in RLHF

Given any preference matrix, e.g.:
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P Rock Paper Scissors

Rock 0.5 0.7 0

Paper 0.3 0.5 1

Scissors 1 0 0.5

We can transform this matrix into an anti-symmetric matrix (i.e. one where elements across

the diagonal are negations) by multiplying each element by 2 and subtracting by 1:

P Rock Paper Scissors

Rock 0 0.4 -1

Paper -0.4 0 1

Scissors 1 -1 0

Observe that this is now the payoff matrix for a two-player zero sum game. Furthermore,

it is a symmetric game, which means swapping strategies with your opponent leads to the

opposite outcome for both players. We can now consider solving the corresponding game:

π⋆
1, π

⋆
2 = arg max

π1∈Π
arg min

π2∈Π
Eξ1∼π1,ξ2∼π2 [2P(ξ1 ≻ ξ2)− 1]. (24.176)

the solutions to which are known as Von Neumann / Minimax winners. Before we discuss

how to solve this game, we first note that this solution concept has appealing properties:

• Does not assume we can collapse the preference matrix into a reward function and

therefore doesn’t assume transitivity / a shared reward function.

• Learns a strategy that is robust against the worst-case comparator. More formally,

MWs are preferred to any other policy with probability at least 1
2
.

For the preceding game the MW is [5/12, 5/12, 1/6], which does not suffer from mode col-

lapse. This reflects the fact that equilibrium strategies are often randomized. Also observe

that the above strategy is not merely a scaled version of the policy we’d get out of soft RL

– we’re instead learning something qualitatively different and more robust.

24.4 SPO: Self-Play Preference Optimization

Unfortunately, doing adversarial training at the scale of LLMs can be challenging in practice.

In response, we will now describe how a simple, self-play strategy can be used instead to

compute an approximate equilibria, leveraging the symmetry of the above game.

Proof: First, let us consider solving the above game by running two no-regret algorithms

against eachother. As usual, we can define a sequence of losses for each player:

ℓ1t (π) = Eξ∼π,ξ′∼πt
2
[2P(ξ ≻ ξ′)− 1], ℓ2t (π) = Eξ∼π1

t ,ξ
′∼π[−(2P(ξ ≻ ξ′)− 1)]. (24.177)
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Without loss of generality, assume that π0
1 = π0

2. Then, we have

ℓ10(π) = Eξ∼π,ξ′∼π0
2
[2P(ξ ≻ ξ′)− 1] (24.178)

= Eξ∼π,ξ′∼π0
1
[2P(ξ ≻ ξ′)− 1] (24.179)

= Eξ∼π0
1 ,ξ

′∼π[−(2P(ξ ≻ ξ′)− 1)] (24.180)

= ℓ20(π), (24.181)

where we use the anti-symmetry of the payoff matrix in the second to last equality. If we feed

two (deterministic) no-regret algorithms the same sequence of loss functions and start them

from the same initial strategy, they will produce identical iterates. Thus, an implication of

the above is that ∀t ∈ [T ], πt
1 = πt

2.

Practically, this means that rather than needing to have two separate policy networks and

memory and dealing with the instabilities of adversarial training, we can instead merely treat

a second sample from the same policy as a sample from a fictitious second player.

To implement SPO, one first trains a pairwise preference model P̂ that maps from pairs

of completions to the probability the former is preferred to the latter. This can be done

via standard maximum likelihood estimation (MLE) but doesn’t assume transitivity like a

reward model. Observe that this is just using a function approximator to model the ground-

truth preference matrix, P . One then samples multiple times from the policy, queries the

preference model on each pair, and computes a win rate for each sample – i.e., an empirical

estimate of the above loss function. One can then use these win-rates as rewards for a

downstream RM-based policy optimization procedure. In short, the changes from standard

RLHF are (1) training a preference rather than a reward model and (2) sampling multiple

completions per prompt (which one often does anyway in practice). We visualize the full

process below. One can also use another LLM as the preference model, often referred to

as LLM-as-a-judge. Because such models are trained on internet data, they often exhibit

intransitivities in their judgments due to the implicit preference aggregation caused by scale.
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Figure 24.34: In SPO (Self-Play Preference Optimization), one compares a policy to itself via

the use of a learned preference model or “judge” LLM. In particular, one samples multiple

completions from the policy, asks the preference model to pick a winner for each pairwise

comparison, and then uses the win rate of each completion as the reward for an RL procedure.
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