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Outline for Today

1. What assumption on the preference dataset did we make
in the DPO derivation and what happens when it breaks?

2. When are two-stage RLHF and DPO equivalent?

3. Why does two-stage RLHF work much better in practice?



Recap: Forward and Reverse KL
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FKL is “‘mode-covering” while RKL is “mode-seeking”



Recap: Information Geometry of RLHF

=l G LINES ﬂg//‘““f\)

F el D




Recap: Information Geometry of RLHF

~ Logistic ® Logistic Regression
Regression over 11 D over X

Ty|hf = arg max _5~n[’¢mle(§)] + Dy (7] | 7pef)
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Why does DPO break with Partial Coverage?
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DPO Doesn’t Regularize to Tref and can produce OOD responses.
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When are two-stage RLHF and DPO equivalent?

A:lf (1) I1 & A and (2) all projections exact.
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Policies vs. Reward Models

Policies: 7 : & —» A() € 11
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Two Stage RLHF > DPO
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|Stiennon et al., Ouyang et al.]



Two Stage RLHF > DPO
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Grounding the Gap in Summarization

. We will focus on the task of summarization of Reddit posts,
using models from the Pythia family pre-trained on the Pile.

. We will use the same dataset to train both policies and
reward models.

. We will start from the same SFT checkpoint to train both.

. We will use the same optimizer (DPO) for both online and
offline PFT with the same hyperparameters.



Gap Appearsin “@s to @s” Comparison
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6 Hypotheses for the Online-Offline Gap



Hl;: Intrinsic Value of On-Policy Feedback

cff&?« Sasha Rush &
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Lot of pitches this week for "perpetual data machines". Either laundering

self-generated data or attributing prescience to reward models. Just
want to caution that is a common trap smart people fall for.

3 - 139.4K




H,: Failure of Offline Regularization to 7z o¢

n* = argmin Dy, (D || x)

mell

[Song et al.]
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H: Proper Learning w/ a Generation-Verification Gap

Only need to search over I 1 (%sim) C 11!



H: Proper Learning w/ a Generation-Verification Gap

Generators Verifiers
All roads lead to likelihood, but RL takes a shortcut!



Evidence for Generation-Verification Gap
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policy doesn't hurt. policy doesn't help.



Closing the Generation-Verification Gap

Simplify Policy: Complicate Reward:
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Online PFT =~ Offline PFT with no
generation-verification gap!



Outline for Today

1. What assumption on the preference dataset did we make
in the DPO derivation and what happens when it breaks?

A: Full coverage of &. Without it, we can’t control the RKL.
2. When are two-stage RLHF and DPO equivalent?

A: When 11 and &2 are isomorphic and all projections are exact.

3. Why does two-stage RLHF work much better in practice?

A: RLHF only has to search over policies (generators) that are
optimal for simple rewards (verifiers) rather than over all of 1 1.



