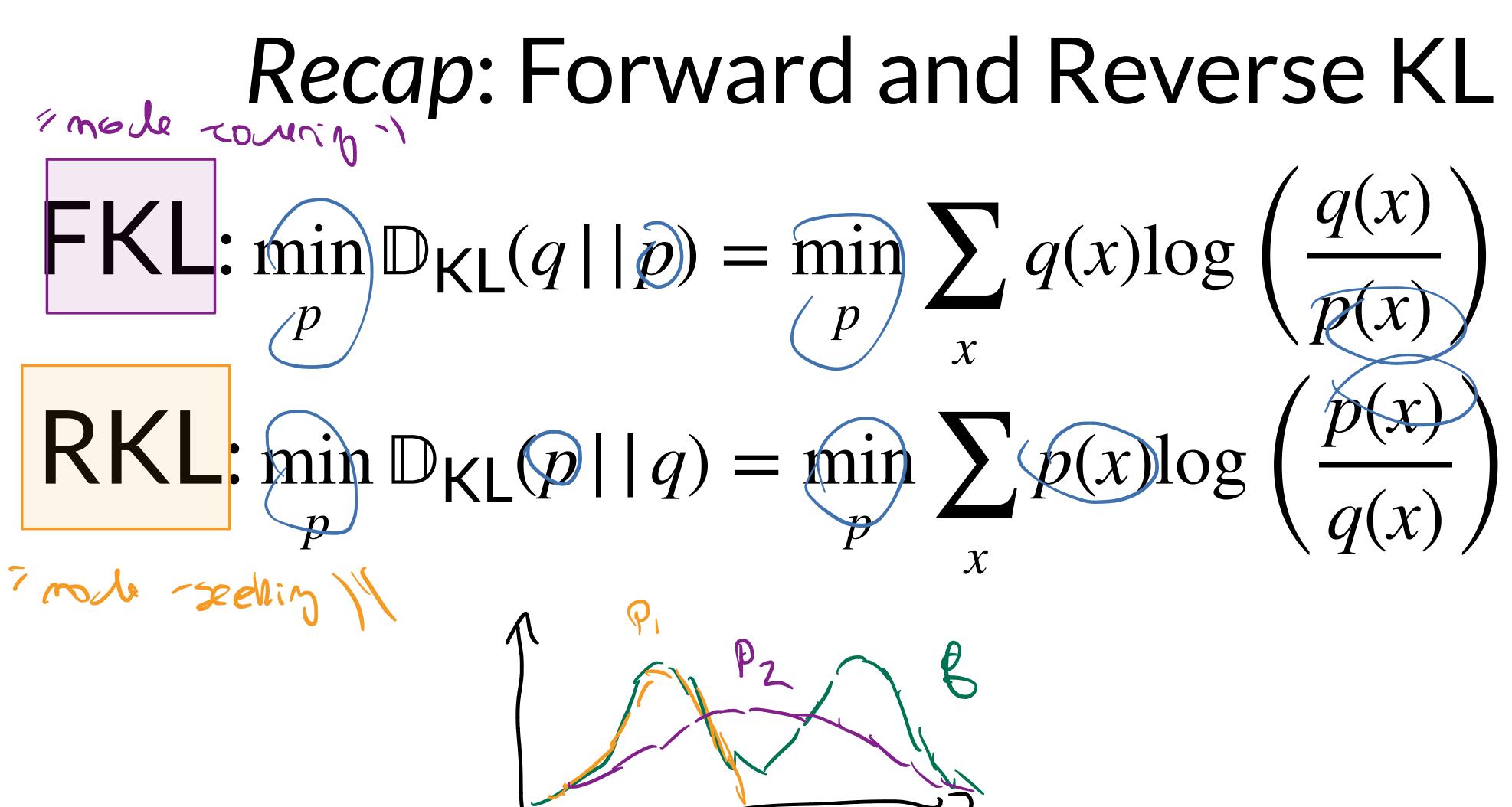
The Value of RL in Fine-Tuning

Gokul Swamy

1. What assumption on the preference dataset did we make in the DPO derivation and what happens when it breaks?

2. When are two-stage RLHF and DPO equivalent?

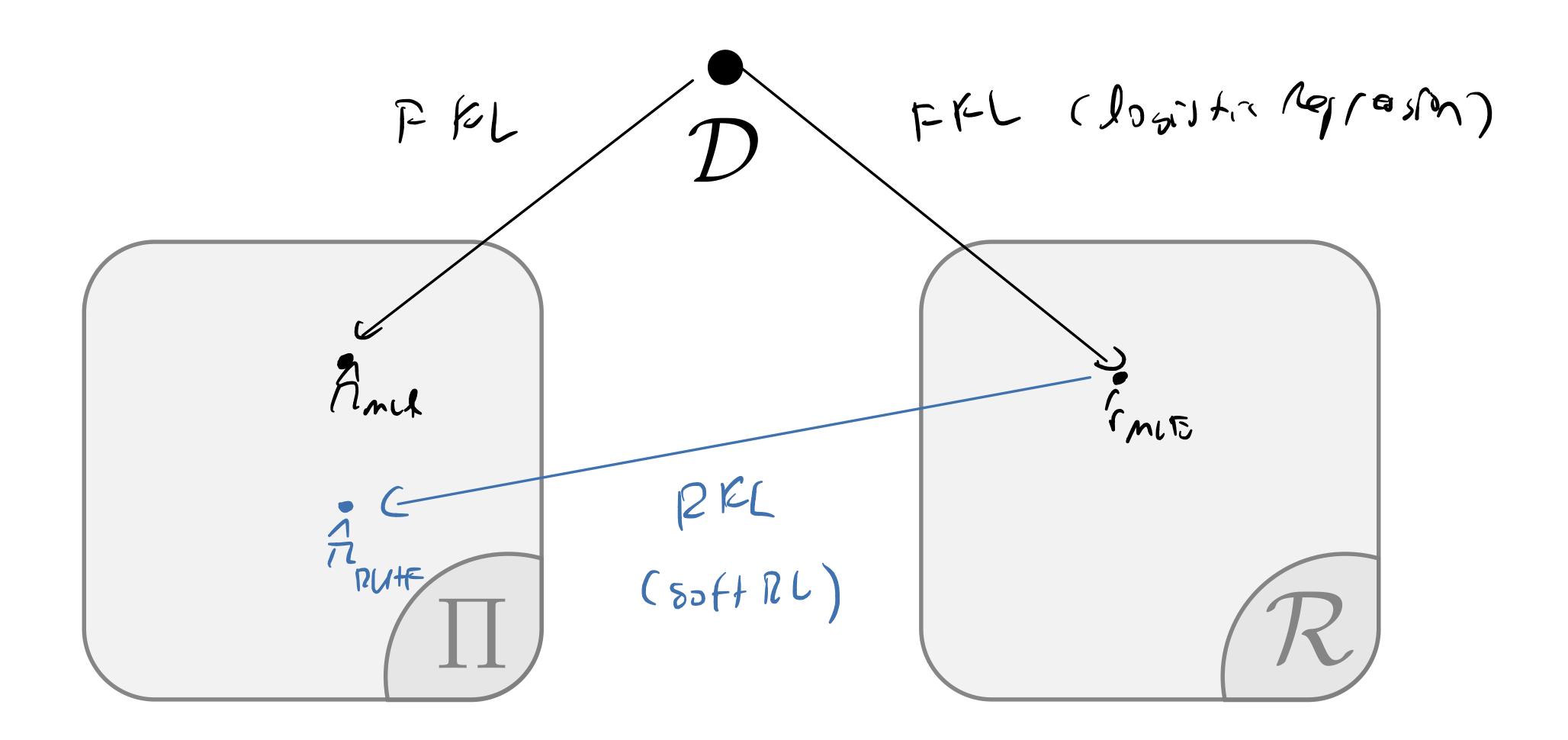
3. Why does two-stage RLHF work much better in practice?

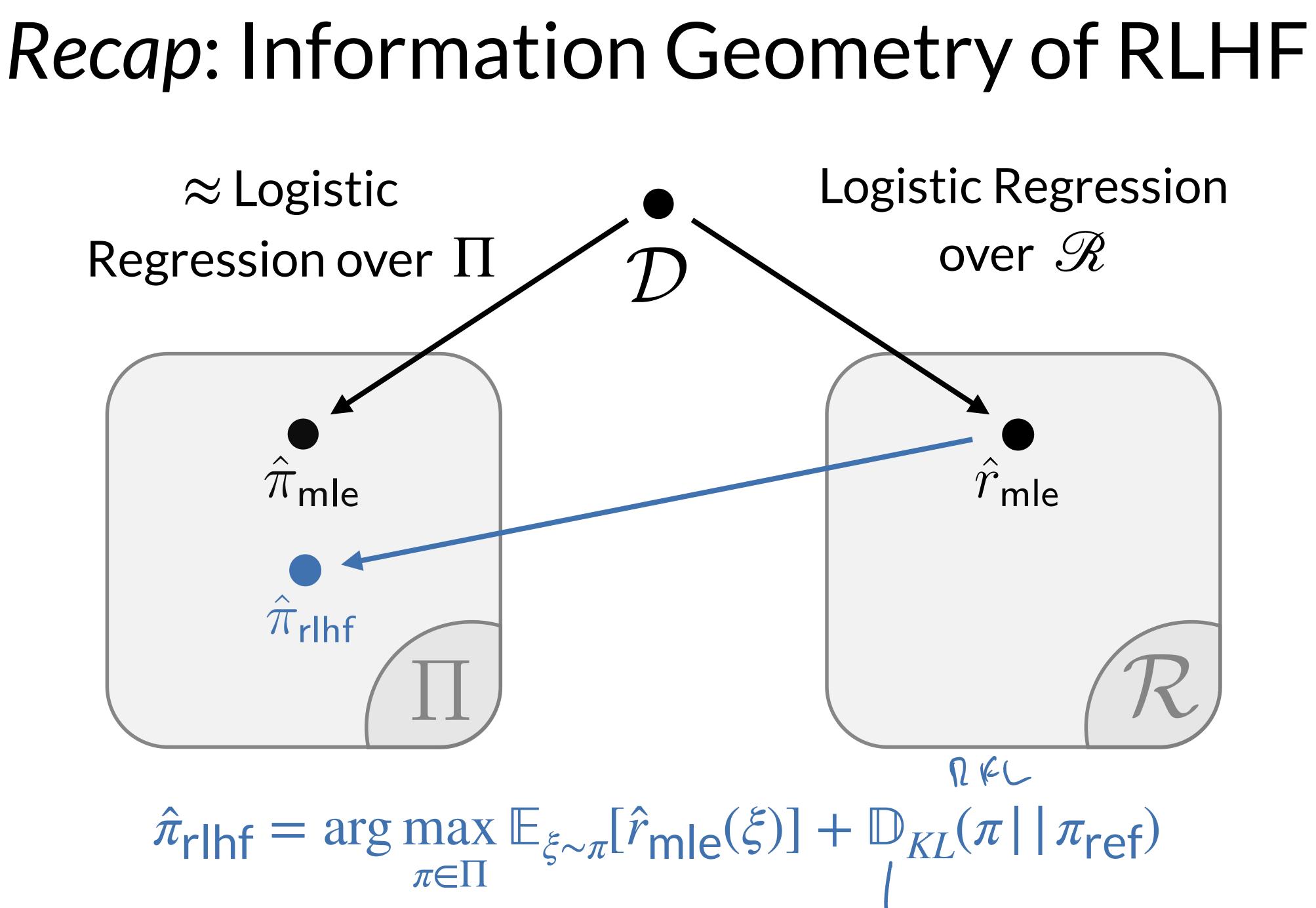


MLE 1 male sacity

FKL is "mode-covering" while RKL is "mode-seeking"

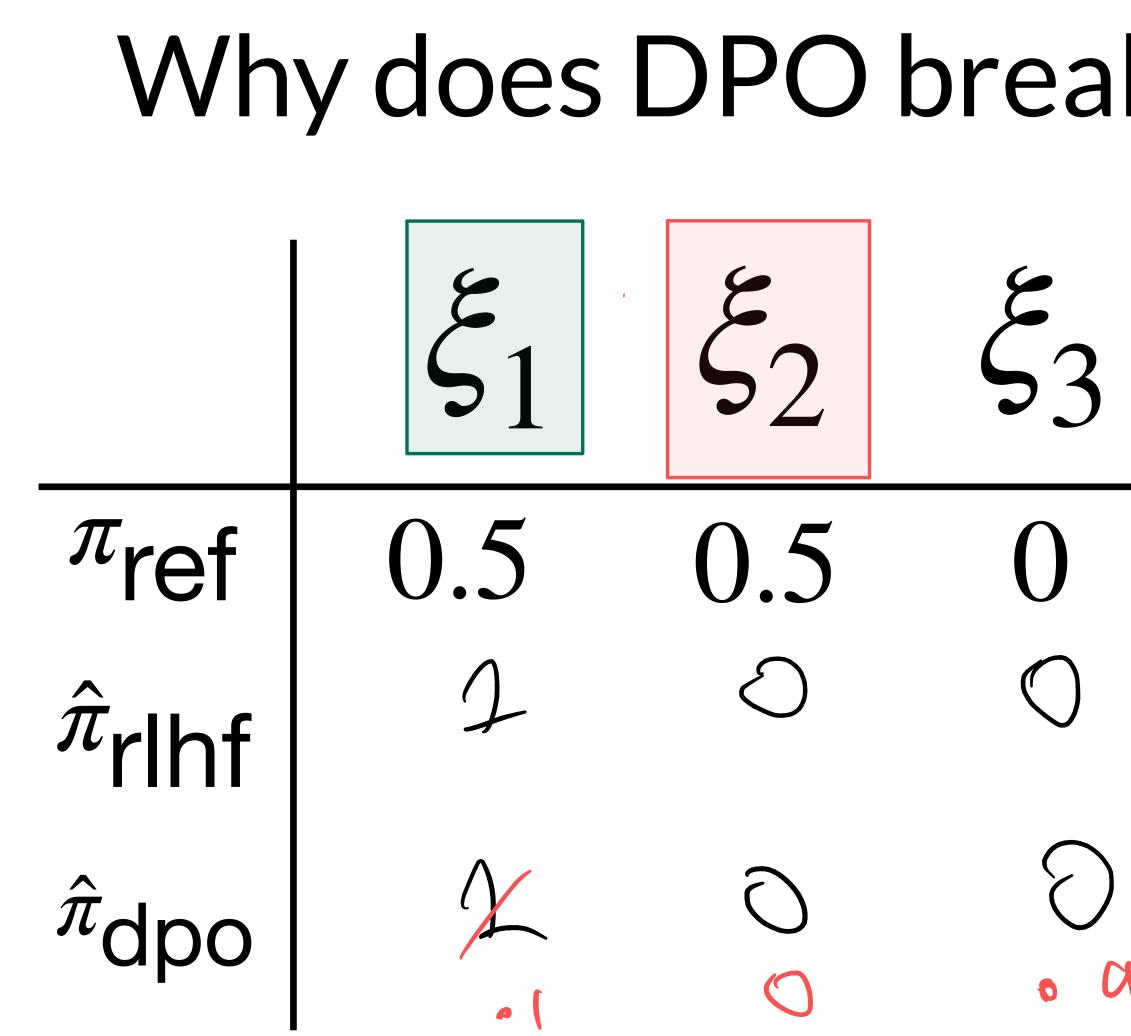
Recap: Information Geometry of RLHF





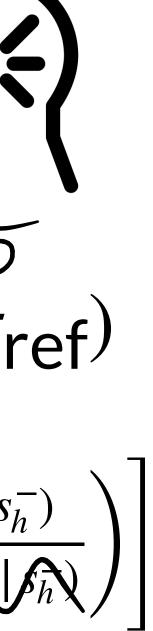
- 1. What assumption on the preference dataset did we make in the DPO derivation and what happens when it breaks?
- **A**: Full coverage of \mathscr{D} . Without it, we can't control the RKL.
- 2. When are two-stage RLHF and DPO equivalent?

3. Why does two-stage RLHF work much better in practice?



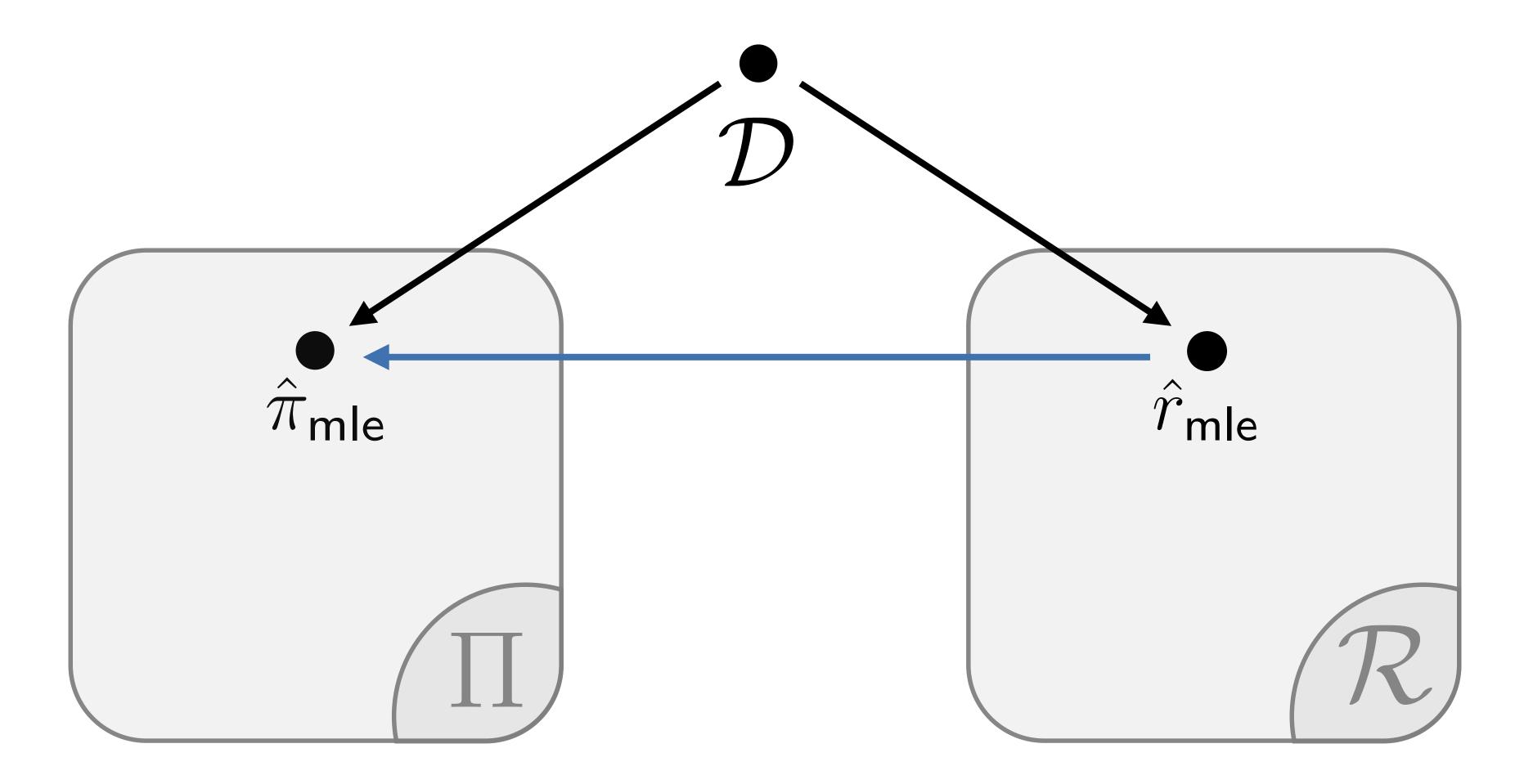
DPO Doesn't Regularize to π_{ref} and can produce OOD responses.

Why does DPO break with Partial Coverage? $\begin{bmatrix} \zeta_{1} & \zeta_{2} \\ \zeta_{2} & \zeta_{2} \\ \zeta_{1} & \zeta_{2} \\ \zeta_{2} & \zeta_{2} \\ \zeta_{1} & \zeta_{2} \\ \zeta_{2} & \zeta_$ $\underset{\pi \in \Pi}{\operatorname{arg\,max}} \mathbb{E}_{\xi \sim \pi}[\hat{r}_{\mathsf{mle}}(\xi)] + \mathbb{D}_{KL}(\pi \mid |\pi_{\mathsf{ref}})$



- 1. What assumption on the preference dataset did we make in the DPO derivation and what happens when it breaks?
- **A**: Full coverage of \mathscr{D} . Without it, we can't control the RKL.
- 2. When are two-stage RLHF and DPO equivalent?
- **A**: When Π and \mathcal{R} are isomorphic and all projections are exact.
- 3. Why does two-stage RLHF work much better in practice?

When are two-stage RLHF and DPO equivalent?



A: If (1) $\Pi \Leftrightarrow \mathscr{R}$ and (2) all projections exact.

MLE is invariant to reparameterization.

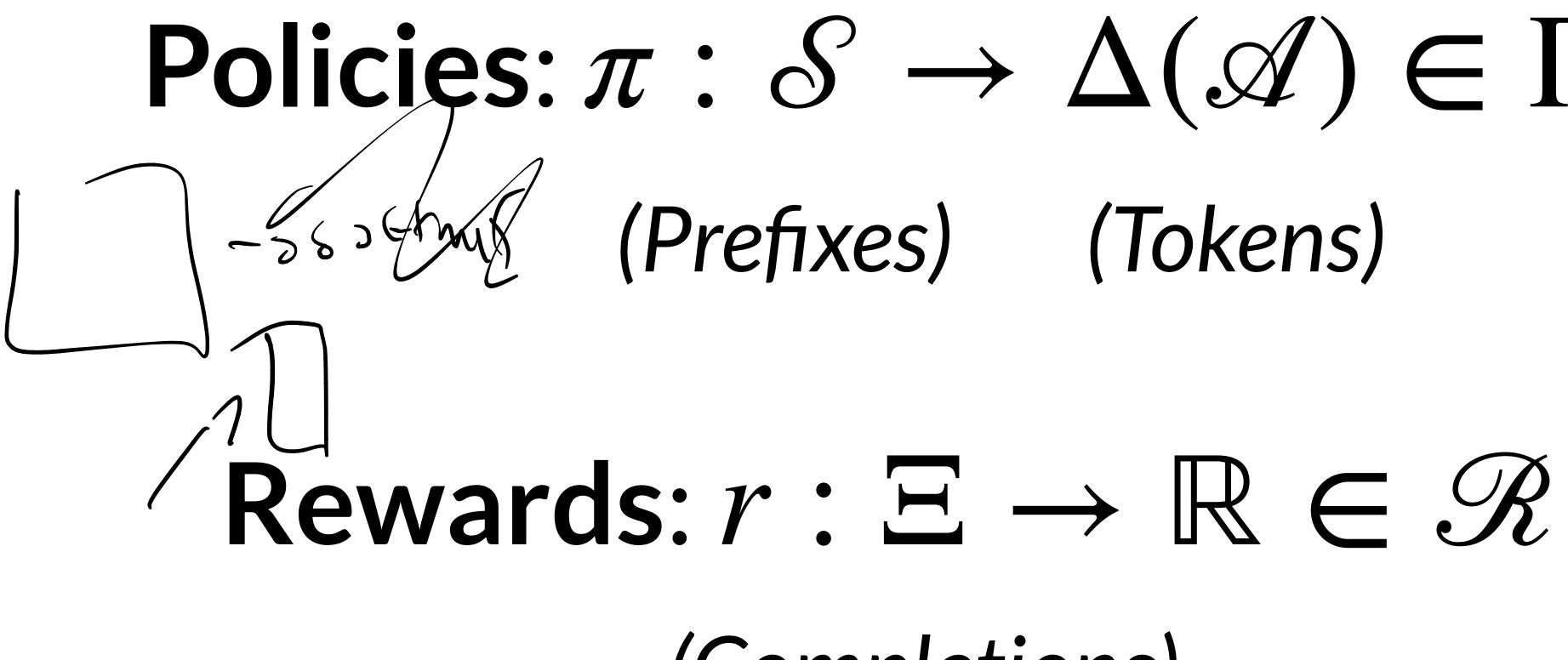
$$PO \text{ when } \Pi \Leftrightarrow \mathcal{R}$$

$$(\bigwedge_{i \in \mathbb{N}} \mathbb{P}^{i} \otimes \mathbb{P}^{i})$$

$$= \mathbb{E}_{\mathcal{D}} \left[\log \sigma \left(\hat{r}_{\text{mle}}(\xi^{+}) - \hat{r}_{\text{mle}}(\xi^{-}) \right) \right]$$

$$g \hat{\pi}_{mle}(a_h | s_h) = \hat{r}_{mle}(\xi)$$

$$(\text{soft} | \mathcal{Q}(= \mathcal{Q} \mathcal{U}))$$

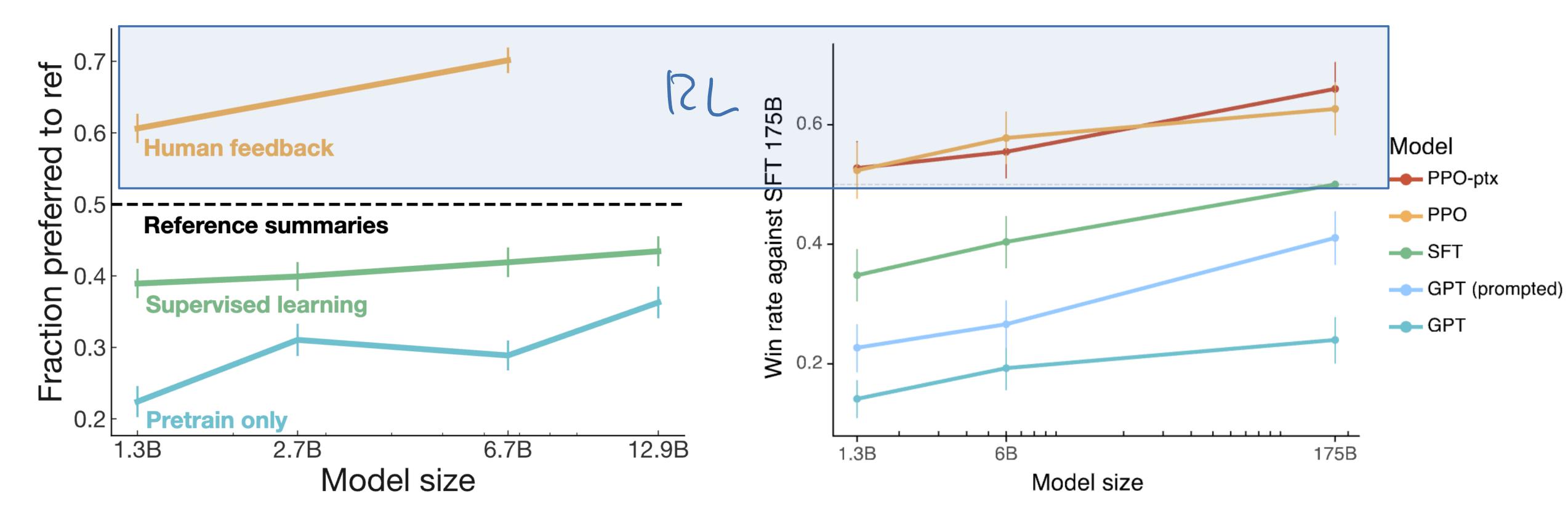


Both of these are fine-tuned from the same SFT checkpoint!

Policies vs. Reward Models Policies: $\pi : \mathcal{S} \to \Delta(\mathcal{A}) \in \Pi$

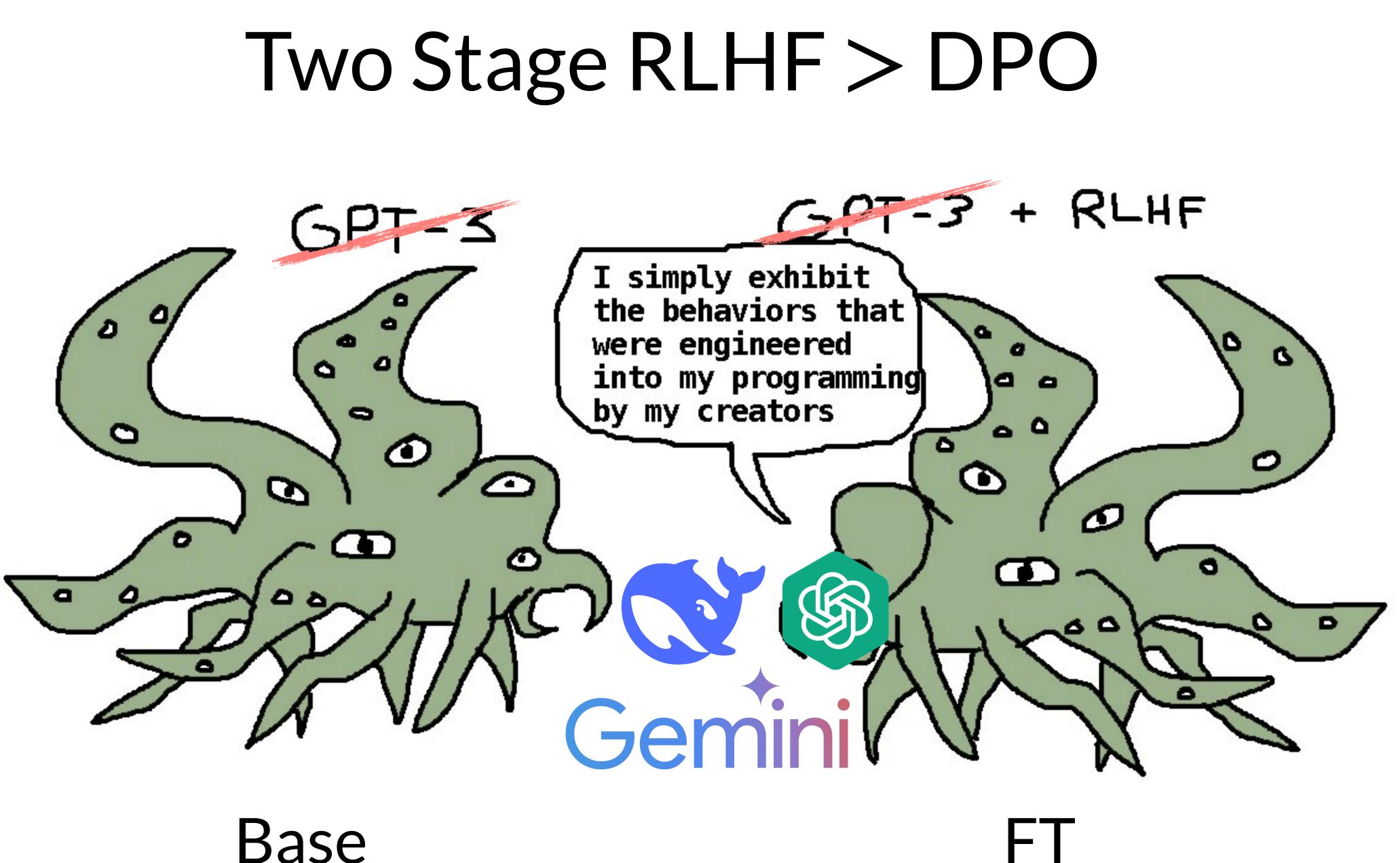
(Completions)

- 1. What assumption on the preference dataset did we make in the DPO derivation and what happens when it breaks?
- **A**: Full coverage of \mathscr{D} . Without it, we can't control the RKL.
- 2. When are two-stage RLHF and DPO equivalent?
- **A**: When Π and \mathcal{R} are isomorphic and all projections are exact.
- 3. Why does two-stage RLHF work much better in practice?



Two Stage RLHF > DPO

[Stiennon et al., Ouyang et al.]

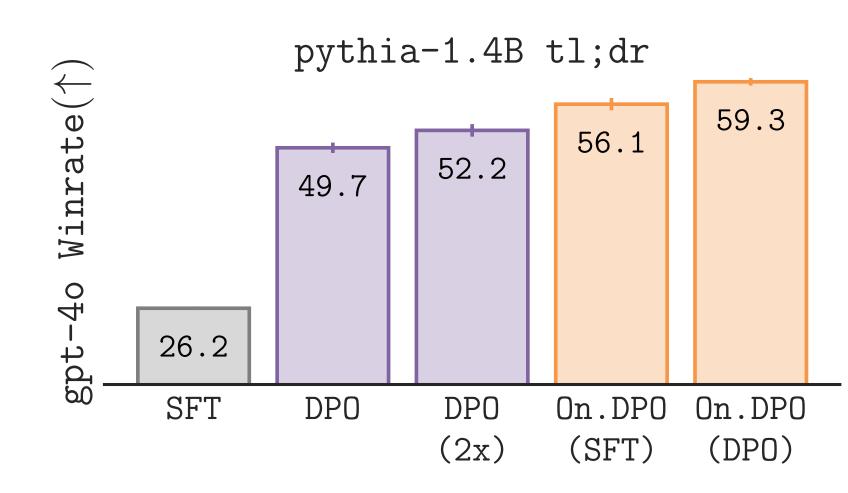


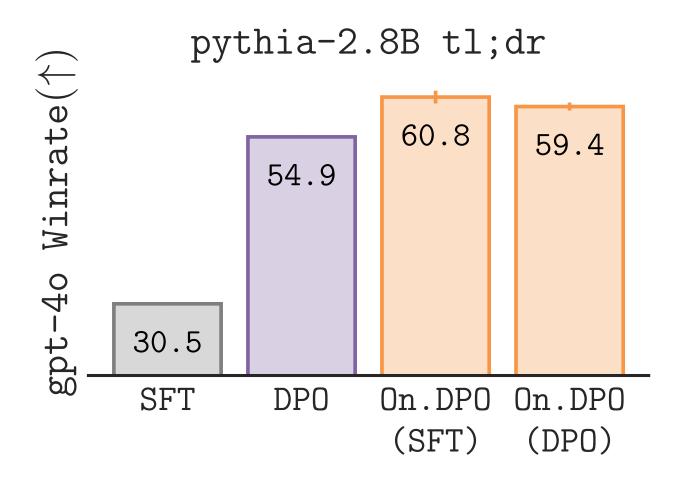
Base

Grounding the Gap in Summarization

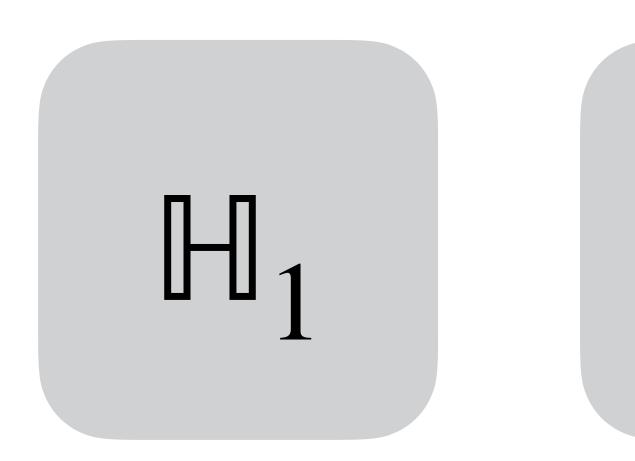
- 1. We will focus on the task of summarization of Reddit posts, using models from the Pythia family pre-trained on the Pile.
- 2. We will use the *same* dataset to train both policies and reward models.
- 3. We will start from the *same* SFT checkpoint to train both.
- 4. We will use the *same* optimizer (DPO) for both online and offline PFT with the *same* hyperparameters.

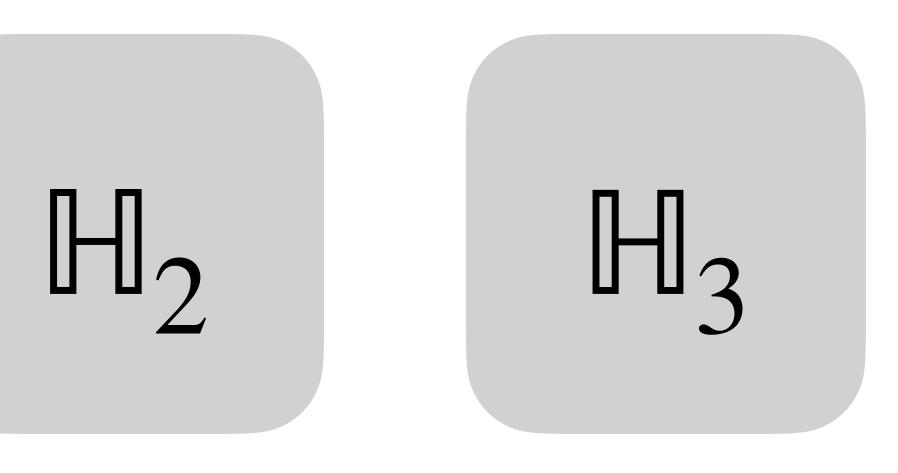
Gap Appears in " s to s" Comparison





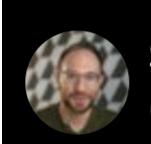
6 Hypotheses for the Online-Offline Gap





HB

\mathbb{H}_1 : Intrinsic Value of On-Policy Feedback



want to caution that is a common trap smart people fall for.

9:58 AM · Dec 15, 2023 · **139.4K** Views

- ... but the on-policy labels are just imputed
- ... from an RM trained on the same data as the policy
 - ... and we can't create any new info via sampling.

Lot of pitches this week for "perpetual data machines". Either laundering self-generated data or attributing prescience to reward models. Just

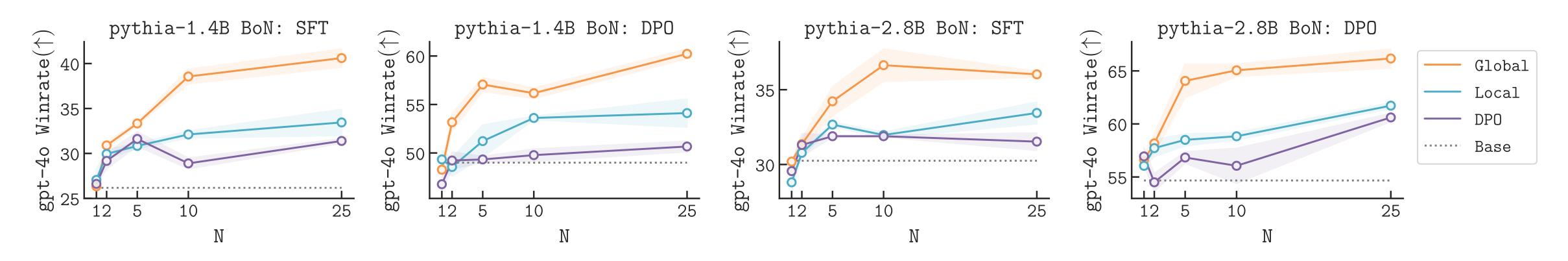
\mathbb{H}_{2} : Failure of Offline Regularization to π_{ref} (FGNT **Reverse KL has an on-policy**

$\pi^{\star} = \arg\min_{\pi \in \Pi} \mathbb{D}_{KL} \left(\mathcal{D} \mid \mid \pi \right) + \mathbb{D}_{KL} \left(\pi \mid \mid \pi_{ref} \right)$

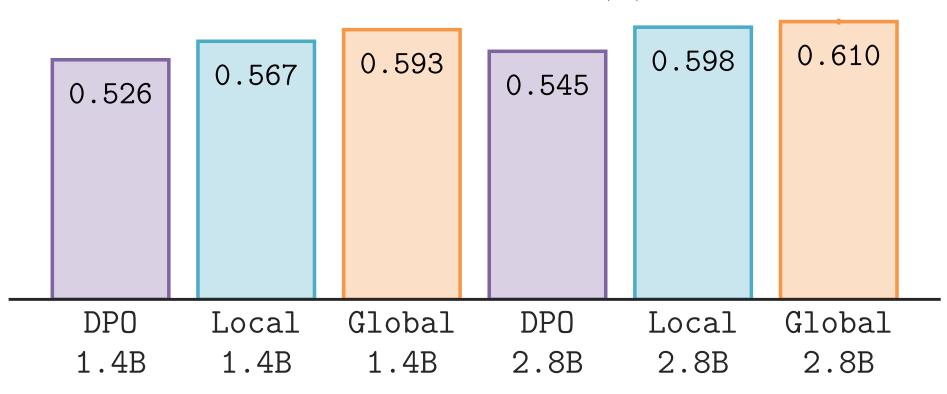
expectation.

... but we used the same regularizer for all experiments.

\mathbb{H}_{5} : RMs Generalize Better OOD



... but they also generalize better ID

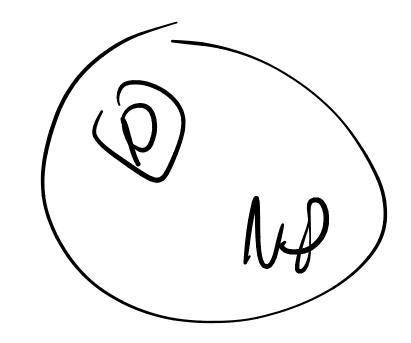


RM Validation Likelihood (\uparrow) on tl;dr

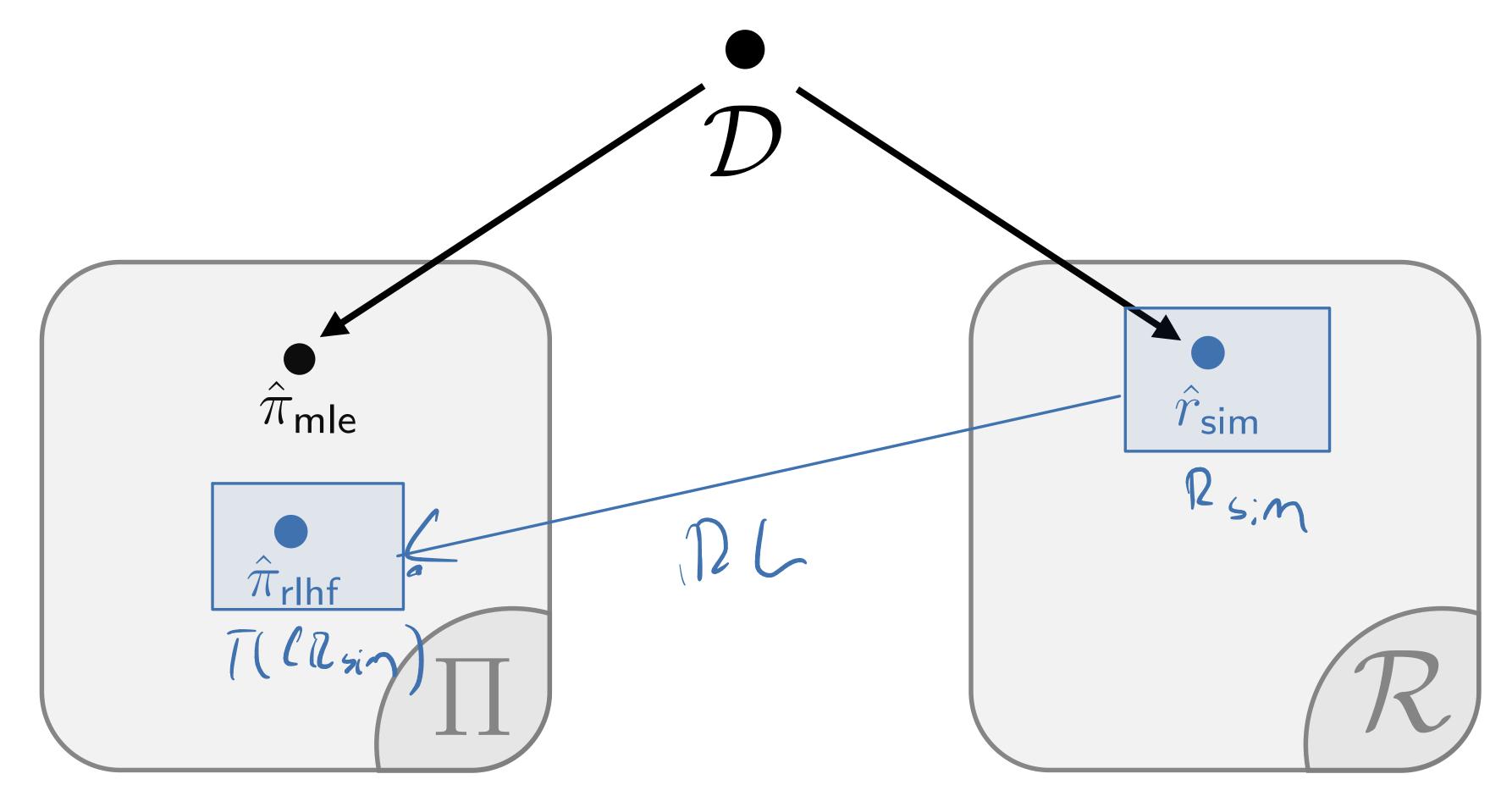
Generation-Verification Gaps

4	6	2	3	1	5	7	8	9
8	3	9	7	4	2	1	5	6
5	7	1	6	8	9	4	3	2
3	1	8	4	2	7	6	9	5
6	4	5	1	9	8	2	7	3
9	2	7	5	6		8	1	4
2	9	З	8	7	4	5	6	1
7	5	6	2	3	1	9	4	8
2 7 1	8	4	9	5	6	3	2	7

GV Gap = easier to check than to solve!

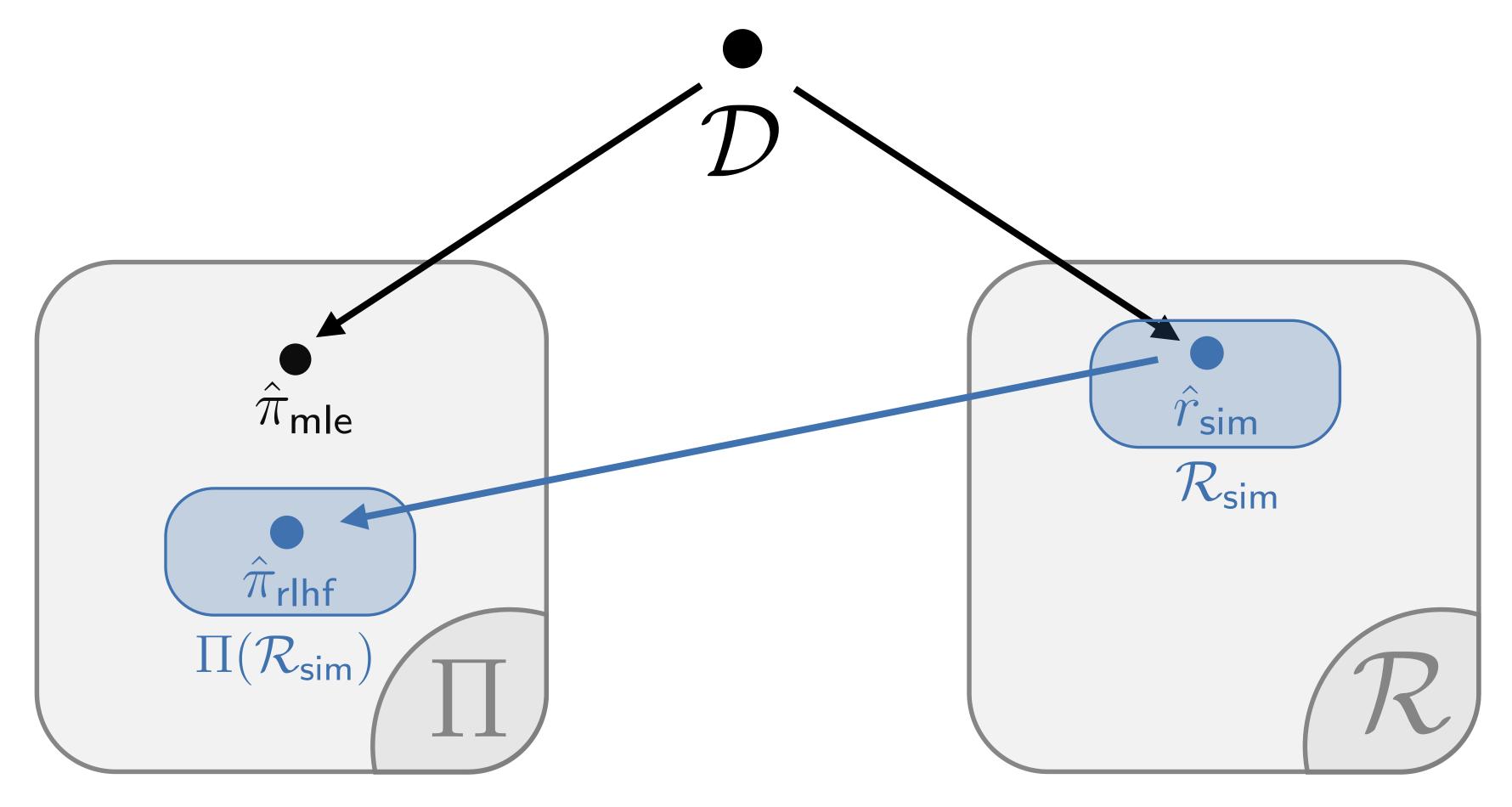


\mathbb{H}_6 : Proper Learning w/ a Generation-Verification Gap



Only need to search over $\Pi(\mathscr{R}_{sim}) \subset \Pi!$

\mathbb{H}_6 : Proper Learning w/ a Generation-Verification Gap

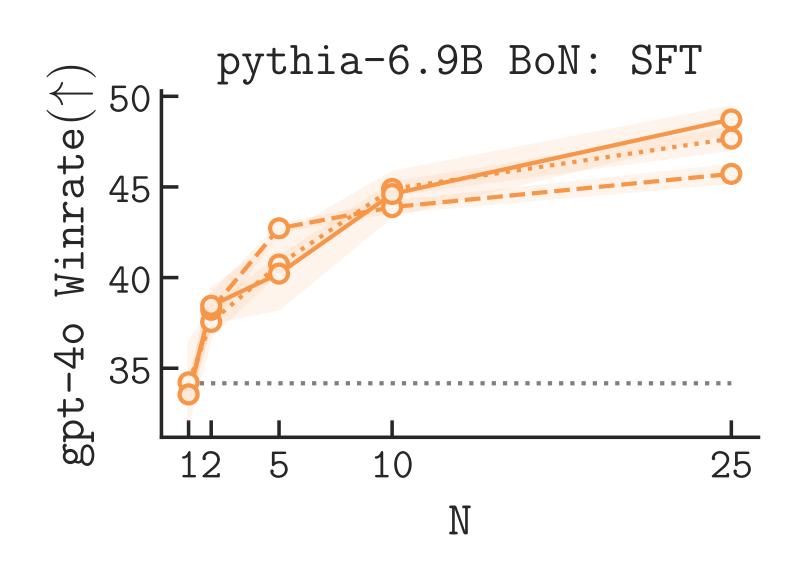


Generators

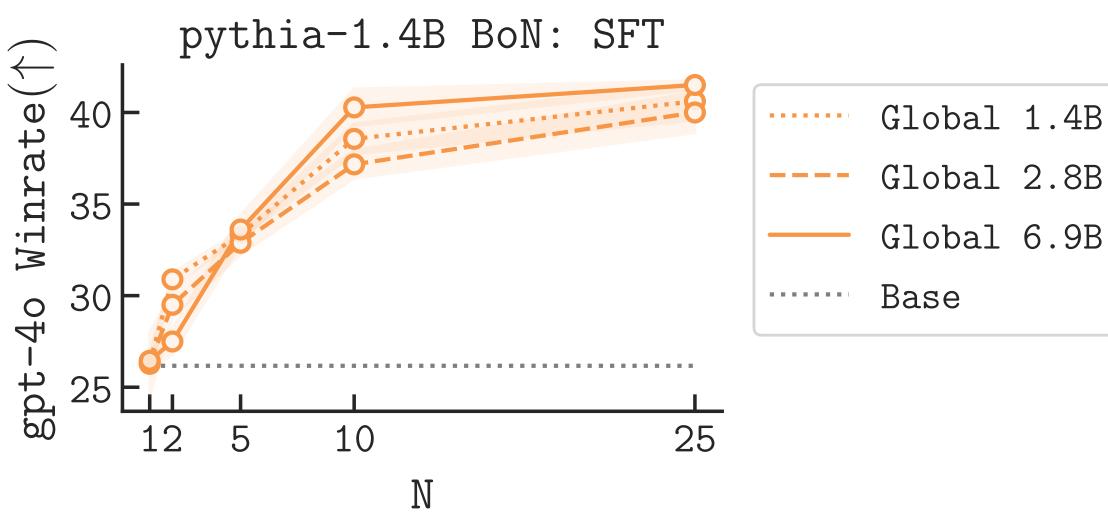
Verifiers

All roads lead to likelihood, but RL takes a shortcut!

Evidence for Generation-Verification Gap

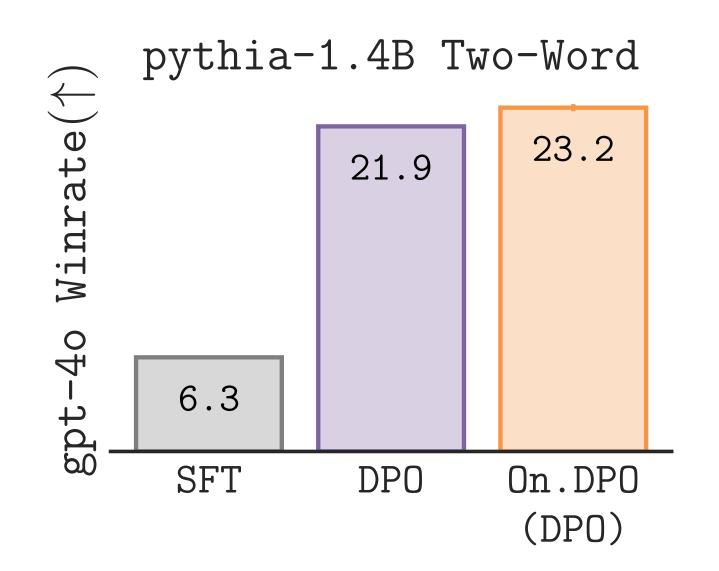


Using a much smaller RM than policy doesn't hurt.



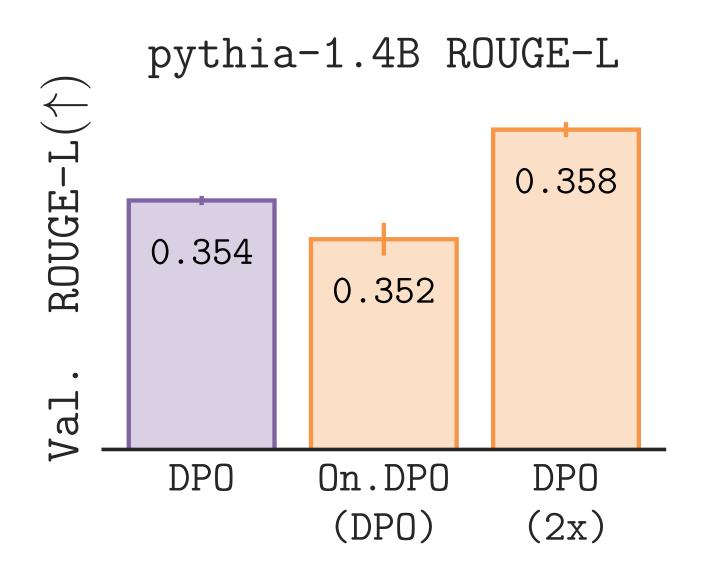
Using a much larger RM than policy doesn't help.

Closing the Generation-Verification Gap



Online PFT \approx Offline PFT with no generation-verification gap!

Simplify Policy: Complicate Reward:



- 1. What assumption on the preference dataset did we make in the DPO derivation and what happens when it breaks?
- **A**: Full coverage of \mathscr{D} . Without it, we can't control the RKL.
- 2. When are two-stage RLHF and DPO equivalent?
- A: When Π and \mathcal{R} are isomorphic and all projections are exact.
- 3. Why does two-stage RLHF work much better in practice?

A: RLHF only has to search over policies (generators) that are optimal for simple rewards (verifiers) rather than over all of 11.