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1. What assumption on the preference dataset did we make 
in the DPO derivation and what happens when it breaks? 

2. When are two-stage RLHF and DPO equivalent? 

3. Why does two-stage RLHF work much better in practice?
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Recap: Forward and Reverse KL

FKL: min
p

!KL(q | |p) = min
p ∑

x
q(x)log ( q(x)

p(x) )
RKL: min

p
!KL(p | |q) = min

p ∑
x

p(x)log ( p(x)
q(x) )

FKL is “mode-covering” while RKL is “mode-seeking”
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Recap: Information Geometry of RLHF
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Recap: Information Geometry of RLHF

Logistic Regression 
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A: Full coverage of . Without it, we can’t control the RKL.)
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Why does DPO break with Partial Coverage?

ξ1 ξ2 ξ3
πref 0.5 0.5 0

arg max
π∈Π

'ξ∼π[ ̂rmle(ξ)] + !KL(π | |πref)

DPO Doesn’t Regularize to  and can produce OOD responses. πref
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When are two-stage RLHF and DPO equivalent?

A: If (1)  and (2) all projections exact.Π ⇔ ℛ



 If ⏱: RLHF  DPO when = Π ⇔ ℛ
') log σ (

H

∑
h

log ̂πmle(a+
h |s+

h ) − log ̂πmle(a−
h |s−

h )) = ') [log σ ( ̂rmle(ξ+) − ̂rmle(ξ−))]

⇒ ∀ξ ∈ Ξ,
H

∑
h

log ̂πmle(ah |sh) = ̂rmle(ξ)

̂πrlhf = arg min
π∈Π

!KL (ℙπ | |ℙ⋆
̂r )

= arg min
π∈Π

!KL (ℙπ | |ℙr ̂π)
= ̂πmle

MLE is invariant to reparameterization.
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Policies vs. Reward Models

Policies: π : 1 → Δ(4) ∈ Π

Rewards: r : Ξ → ℝ ∈ ℛ

(Prefixes) (Tokens)

(Completions)

Both of these are fine-tuned from the same SFT checkpoint!
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Two Stage RLHF  DPO>

[Stiennon et al., Ouyang et al.]
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Grounding the Gap in Summarization

1. We will focus on the task of summarization of Reddit posts, 
using models from the Pythia family pre-trained on the Pile. 

2. We will use the same dataset to train both policies and 
reward models. 

3. We will start from the same SFT checkpoint to train both. 

4. We will use the same optimizer (DPO) for both online and 
offline PFT with the same hyperparameters.



Gap Appears in “"s to "s” Comparison

SFT DPO DPO
(2x)

On.DPO
(SFT)

On.DPO
(DPO)

g
p
t
-
4
o

W
i
n
r
a
t
e
("

)

26.2

49.7
52.2

56.1
59.3

pythia-1.4B tl;dr

SFT DPO On.DPO
(SFT)

On.DPO
(DPO)

g
p
t
-
4
o

W
i
n
r
a
t
e
("

)

30.5

54.9
60.8 59.4

pythia-2.8B tl;dr



 6 Hypotheses for the Online-Offline Gap

ℍ1 ℍ2 ℍ3

ℍ4 ℍ5 ℍ6



: Intrinsic Value of On-Policy Feedbackℍ1
… but the on-policy labels are just imputed

… and  we can’t create any new info via sampling. 

…  from an RM trained on the same data as the policy



: Failure of Offline Regularization to ℍ2 πref

π⋆ = arg min
π∈Π

!KL () | |π) + !KL (π | |πref)

Reverse KL has an on-policy 
expectation.

[Song et al.]

… but we used the same 
regularizer for all experiments.
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… but they also generalize better ID

 : RMs Generalize Better OODℍ5
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Generation-Verification Gaps

GV Gap = easier to check than to solve!

↳ p != NP

⑳so



: Proper Learning w/ a Generation-Verification Gapℍ6

Only need to search over !Π (ℛsim) ⊂ Π

Rsim
↳ RL
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: Proper Learning w/ a Generation-Verification Gapℍ6

Generators Verifiers

All roads lead to likelihood, but RL takes a shortcut!



Evidence for Generation-Verification  Gap
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Using a much 
smaller RM than 

policy doesn’t hurt.

Using a much 
larger RM than 

policy doesn’t help.



Closing the Generation-Verification  Gap

Online PFT  Offline PFT with no 
generation-verification gap!
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Simplify Policy: Complicate Reward:
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A: Full coverage of . Without it, we can’t control the RKL.)

A: When  and  are isomorphic and all projections are exact.Π ℛ

A: RLHF only has to search over policies (generators) that are 
optimal for simple rewards (verifiers) rather than over all of .Π


