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We Live in the Era of Fine-Tuning

I simply exhibit
the behaviors that
were englneered

into my programming
by my creators




We Live in the Era of Fine-Tuning
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We Live in the Era of Fine-Tuning

Prompt:
What 1s the purpose of the list C in the code below?

def binomial_coefficient(n, r):
C = [0 for i in range(r + 1)];
Clo] = 1;
for i in range(l1, n + 1):
j = min(i, r);

while j > O:
C[j]l += C[j - 11;
J =1
return Clr]
GPT-3 175B completion: InstructGPT 175B completion:
A. to store the value of C[0] The list C 1n this code 1s used to store the values of the
B. to store the value of C[1] binomial coefficient as the function iterates through
C. to store the value of C[i] the values of n and r. It 1s used to calculate the value
D. to store the value of C[i1 - 1] of the binomial coefficient for a given value of n and
r, and stores the result in the final return value of the
function.

Base FT

[Ouyang et al.]



We Live in the Era of Fine-Tuning
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Collect demonstration data,
and train a supervised policy.

Step 1

A promptis

sampled from our
prompt dataset.

Explain the moon
landing to a 6 year old

I
|

A labeler
demonstrates the @
desired output
behavi 2
enhavior. Some people went
to the moon...
|
Y
This data is used =
to fine-tune GPT-3 058
with supervised \}52{/
learning. Y,
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Step 2
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Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

(A o

Explain gravity... Explain war...

[C o

Moon is natural People went to
satellite of . the moon...
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Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs

N keTnbapes s
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Language Modeling as an MDP
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What makes the Language
MDP Special

1. Dynamics are deterministic, known, and tree-structured.
2. Resets are just generating from a prefix — easy to do.

3. The reward function is non-Markovian and doesn't
decompose into token-wise rewards.



Preference Fine-Tuning
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Prompt
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Preference Fine-Tuning

Goal: Maximize therelative I*kelihood of
preferred to completions.
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n* = arg HélrIIl Der (@rl |7z) x_\l_ D s (7Z'| |7Z'ref)
§ Qi o
(Data Likelihood)\_, (Prior Reg.)




Outline for Today

1. What is the fine-tuning problem?
A: Regularized maximum likelihood estimation.

2. End-to-end, what is the two-stage RLHF process doing?
A: MLE over reward models followed by MaxEnt over policies.

3. What are direct alighment algorithms?



Notation

For simplicity, we're going to assume the “Bradley-Terry”
model of preferences:

P& > &1 s) = o(r(S)) — (&)

Also, let’'s denote the empirical preference distribution as:

P51 > 6150

i.e. how often raters preferred &, to &, given prompt s,



Reward Modeling is MLE

Then, /7 rorand P Do CP 1)
Fmle = argmin b o [Dg, (Py | |P)] -
resx 3 - 9 ©
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This is just logistic regression / classification!



Reward Modeling is a FKL Projection onto &£




Recap: “Soft” / Entropy Regularized RL

Ty|hf = arg max [Effv:z[’?mle(‘a&)] + Dy, (7] |7Tref))
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Soft RL is a Reverse KL Projection onto 11

N FKL

E2E, (1) RLHF is FKL to &£ and (2) RKL to I1



>j: Soft RL is a Reverse KL Projection onto I1
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Outline for Today

1. What is the fine-tuning problem?
A: Regularized maximum likelihood estimation.

2. End-to-end, what is the two-stage RLHF process doing?
A: MLE over reward models followed by MaxEnt over policies.

3. What are direct alignment algorithms?

A: Algorithms like DPO directly maximize likelihood over 11 without
passing through .



The DPO “Reparameterization Trick”

HIZ Tref(ay | sy) - exp(r(S))
Z(80)
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r(s) = 2 log " (ay, | ) — log meef(ay | s,) + 1og Z(sy)
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We can express the reward model that makes a
policy (soft) optimal in terms of said policy by
“inverting” the MaxEnt RL equations!



More explicitly, consider the soft-optimal policy for 7
P1 (&) o exp(r (&) oo *
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The soft optimal policy for r_is x, Which means we can

optimize over r, and get the soft optimal policy “for free”!

Now, we proceed by MLE directly over policies:
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So, we end up with a single-step MLE procedure!



DPO is a FKL Projection onto I 1
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