Imitation Learning as
Game-Solving

Gokul Swamy




Outline for Today

1. Why do we need interaction in imitation learning?
2. What else do we need to tell which mistakes matter?

3. How do we learn a policy that recovers from mistakes
that matter if we don’t know what the reward function is?
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The Pitfalls of Behavioral Cloning
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What went wrong?
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Covariate Shift = Compounding Errors
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No offline IL algorithm can tell the difference between 7, and



What we talk about when we talk about &€

1. Finite-sample error: limited number of expert demos.

A: Get more data.

2. Optimization error: imperfect search over policy class.

A: Use more compute.

3. Misspecification error: irreducible error from 7 & 11.

A: Use an interactive algorithm.



Interaction Generates Samples from the Test Distribution
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1. Why do we need interaction in imitation learning?

A: to be able to tell that we've made a mistake that compounds.

2. What else do we need to tell which mistakes matter?
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A: information about the set of rewards we could be judged on.

3. How do we learn a policy that recovers from mistakes
that matter if we don't know what the reward function is?



Not All Mistakes are Made Equal
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We need to be able to tell which mistakes cost us performance.



Moments in Imitation Learning
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Ok...but whichf € &£ ???
'll even tell you thatr € X.

/#” |dea: Be good underallf € X!
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1. Why do we need interaction in imitation learning?

A: to be able to tell that we've made a mistake that compounds.
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A: Find the policy that is the least distinguishable from the expert’s
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Inverse RL as Game-Solving

where J(n,f) = E Emn [Z 1(sy, ah)] .



Game-Solving Searches the Pareto Frontier




Approx. Equilibria of IRL Game

Lemma: Assume 7 is an e-approximate equilibria for the
IRL game and for simplicity assume 7, € 11. Then,

J(rp, r) — J(m, 1) < O(eH)

minM $ J(rp, ) — J(m,r) < O(eH)
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Inverse RL as Game-Solving

1. Inverse RL lets avoid compounding errors without
needing access to extra expert interaction. —>  g=Y ejub

2. Inverse RL reduces the search space of policies to just
those that are on the Pareto frontier. - s+us i vhl oo 1o+

3. Inverse RL isn't merely picking a reward that makes the

expert look optimal — it is fundamentally game-theoretic.
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How do we solve the IRL Game?
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J(r, )= J(g, 1)
Policy Update: _

Reward Update:

This is really just a GAN in the space of trajectories!



Take-aways from Today
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2. What else do we need to tell which mistakes matter?

A: information about the set of rewards we could be judged on.

3. How do we learn a policy that recovers from mistakes
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J: Maxknt Inverse RL
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For some fixed A,, we can write the best-response over 7 as:
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Let us proceed by backwards-in-time induction over h:

Base Case (h = H):

V*(sy) =0

Inductive Step (h € [0, H — 1]):
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= log p(a) + Z /Iff(sh, a) +
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This is a single-step, action-level maximum entropy problem!



Recall that MaxEnt problems of the form :

min — H(p) + E, [m(x)]
pPEA(L)

Have solutions of the form :

Here, mis just :
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Can solve for 7Z't* via “soft” policy / value iteration!

Closely connected to Natural Policy Gradient and Hedge!



