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What went wrong?
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Covariate Shift  Compounding Errors⇒

π1(s0) = π2(s0) = [1,0]
π1(s1) = π2(s1) = [ε,1 − ε]

r(s, a) = 1[s = s1]

π2(s2) = [0,1]π1(s2) = [1,0]

No offline IL algorithm can tell the difference between  and π1 π2
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What we talk about when we talk about ε
1. Finite-sample error: limited number of expert demos. 

2. Optimization error: imperfect search over policy class. 

3. Misspecification error: irreducible error from .πE ∉ Π

A: Get more data.

A: Use more compute.

A: Use an interactive algorithm.
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Interaction Generates Samples from the Test Distribution

↓



Outline for Today
1. Why do we need interaction in imitation learning? 

2. What else do we need to tell which mistakes matter? 

3. How do we learn a policy that recovers from mistakes 
that matter if we don’t know what the reward function is?

A: to be able to tell that we’ve made a mistake that compounds.



Outline for Today
1. Why do we need interaction in imitation learning? 

2. What else do we need to tell which mistakes matter? 

3. How do we learn a policy that recovers from mistakes 
that matter if we don’t know what the reward function is?

A: to be able to tell that we’ve made a mistake that compounds.

A: information about the set of rewards we could be judged on. 

Marnecessity

/ sufficieny (1



Not All Mistakes are Made Equal

We need to be able to tell which mistakes cost us performance.
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Moments in Imitation Learning

ℛ = { }- distance to earst car
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Ok … but which  ???f ∈ ℛ

! Idea: Be good under all !f ∈ ℛ

I’ll even tell you that .r ∈ ℛ
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Inverse RL as Game-Solving
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Approx. Equilibria of IRL Game
Lemma: Assume  is an -approximate equilibria for the 

IRL game and for simplicity assume . Then, 
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Inverse RL as Game-Solving

1. Inverse RL lets avoid compounding errors without 
needing access to extra expert interaction. 

2. Inverse RL reduces the search space of policies to just 
those that are on the Pareto frontier. 

3. Inverse RL isn’t merely picking a reward that makes the 
expert look optimal — it is fundamentally game-theoretic.
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How do we solve the IRL Game?

π πEmax
π∈Π

min
f∈ℛ f fJ( −, ) J( , )

Policy Update:

Reward Update:

This is really just a GAN in the space of trajectories!
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If ⏱: MaxEnt Inverse RL
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Base Case ( ):h = H
V⋆

t (sH) ≜ 0

Inductive Step ( ) :h ∈ [0, H − 1]

π⋆
t ( ⋅ |sh) = min

p∈Δ(3)
&p log p(a) + ∑

f∈ℛ
λf

t f(sh, a) + &T(sh,a)[V⋆
t (sh+1)]

Let us proceed by backwards-in-time induction over :h

This is a single-step, action-level maximum entropy problem!



Recall that MaxEnt problems of the form :

min
p∈Δ(4)

− ℍ(p) + &p[m(x)]

Have solutions of the form :

p⋆(x) = exp(m(x))
∑x′ ∈4 exp(m(x′ ))

Here,  is just :m
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π⋆
t (ah |sh) =

exp (∑f∈ℛ λf
t f(sh, ah) + &T(sh,ah)[V
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∑a∈3 exp (∑f∈ℛ λf
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V⋆
t (sh) = &ah∼π⋆t (sh)[log π⋆

t (ah |sh) + λf
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⋆
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Can solve for  via “soft” policy / value iteration!π⋆
t

Closely connected to Natural Policy Gradient and Hedge!


