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Recap from Last Time
1. Why do we need interaction in imitation learning? 

2. What else do we need to tell which mistakes matter? 

3. How do we learn a policy that recovers from mistakes 
that matter if we don’t know what the reward function is?

A: to be able to tell that we’ve made a mistake that compounds.

A: information about the set of rewards we could be judged on. 

A: Find the policy that is the least distinguishable from the expert’s  
under any reward function in the moment set .ℛ



Outline for Today
1. What makes inverse RL sample-inefficient? 

2. Are best responses required for solving the IRL game? 

3. What algorithms can we use in our new reduction?
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Recap: Inverse RL as Game-Solving

π πEmax
π∈Π

min
f∈ℛ f fJ( −, ) J( , )

where .J(π, f ) ≜ &ξ∼π [
H

∑
h

f(sh, ah)]



Recap: Two Flavors of IRL Algorithms
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We’re Playing Adversarial Whack-a-Mole!

RL

We’ve reduced the “easier” problem of IL to the “harder” problem of RL



π πEmax
π∈Π

min
f∈ℛ f fJ( −, ) J( , )

Policy Update

Reward Update

Dual Primal
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Primal algorithms also need to explore as we can force any 
no-regret algorithm to compute  by playing the same !π⋆ f

Frefficient



Outline for Today
1. What makes inverse RL sample-inefficient? 

2. Are best responses required for solving the IRL game? 

3. What algorithms can we use in our new reduction?

A: Actually, competing with the expert is “all you need”.

A: Repeatedly solving a global exploration (RL) problem.



 need not be optimal for   …πE ft

… so  might be far from   …π⋆
t πE

… which means it can’t be the policy we want!

compete



! Idea: save compute by competing with , not !πE π⋆
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Reducing IRL to Expert-Competitive RL

: A policy-selection algorithm  

satisfies the  expert-relative regret guarantee if 

given any sequence of reward functions , it produces a 

sequence of policies  such that

)**+,{*-.π(T)} /π
*-.π(T)

f1:T
πt+1 = /π( f1:t)

T

∑
t=1

J(πE, ft) − J(πt, ft) ≤ *-.π(T) .πE πtft ft

13

! Idea: We never need to compute a best response to an !ft



 is a no-regret reward selection algorithm if when given a 

sequence of policies , it produces iterates  

such that 

with 

/f
π1:t ft+1 = /f(π1:t)

lim
T→∞

*-.f(T)
T

= 0.

T

∑
t=1

J(πt, ft) − J(πE, ft) − min
f ⋆∈ℱr

T

∑
t=1

J(πt, f ⋆) − J(πE, f ⋆) ≤ H*-.f(T),πt πE πt πEft ft
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Reducing IRL to Expert-Competitive RL
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≤
*-.π(T)

T
+

*-.f(T)
T

H .

J(πE, r) − J(π̄, r) = 1
T

T

∑
t=1

J(πE, r) − J(πt, r)πE πE πt

≤ max
f ⋆∈ℱr

1
T

T

∑
t=1

J(πE, f ⋆) − J(πt, f ⋆)πE πt

≤ 1
T

T

∑
t=1

J(πE, ft) − J(πt, ft) +
*-.f(T)

T
HπE πtft ft
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Reducing IRL to Expert-Competitive RL
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Outline for Today
1. What makes inverse RL sample-inefficient? 

2. Are best responses required for solving the IRL game? 

3. What algorithms can we use in our new reduction?

A: A wide variety of sample-efficient “local search” algorithms.

A: Repeatedly solving a global exploration (RL) problem.

A: Actually, competing with the expert is “all you need”.
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Expert-Competitive RL via PSDP
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! Idea: Reset to states 
from the demonstrations!

~ O(H2)
&: left
: left -
A Poly (H, log ITI)

↓

↳: lett
VL-dim-

D
~



Expert-Competitive RL via PSDP

πH = arg max
π∈Π

&sH∼πE
[&aH∼π[ ft(sH, aH)]]

πh = arg max
π∈Π

&sh∼πE
[&ah∼π[ ft(sh, ah) + &T(sh,ah)[V

πh+1:H
t (sh+1)]]]

For h ∈ [H − 1,H − 2,...,1] :

Lemma: Assume that at each time-step , we perform 

policy optimization up to -optimality: 
 

Then, 

 

h ∈ [H]
ε

&sh,ah∼πE
[Qπh+1:H

t (sh, ah) − &a∼πh(sh)[Q
πh+1:H
t (sh, a)]] ≤ εH

J(πE, ft) − J(π1:H, ft) ≤ 4(εH2)



Proof: We proceed via the PDL (shocking, I know):

J(πE, ft) − J(π1:H, ft) =
H

∑
h

&sh,ah∼πE [Qπh+1:H(sh, ah) − &a∼πh(sh)[Q
πh+1:H(sh, ah)]]

≤
H

∑
h

ε(H − h)

≤ 4(εH2)

⇒ *-.π(T) ≤ εH2T



Aside: Compounding Errors in PSDP

Unavoidable in general on cliff-like (irrecoverable) problems.

Interaction can still help us figure out which mistakes compound.

(Can interpolate with or anneal towards  in practice)ρ0
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 Algorithms for IRL!6789(H)

! Idea: Localize policy search by resetting to 
states from the demonstrations!
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Aside: Use (Hybrid) Model for Resets In Practice
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∀s ∈ #, a ∈ $, Q̂(s, a) = 0
π(s) = arg max

a∈$
Q̂(s, a)

Aside: Can Also Use HyQ w/o Simulator Access
↳ s off-policy DL (e. g . Sall or hybrid really butte
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Outline for Today
1. What makes inverse RL sample-inefficient? 

2. Are best responses required for solving the IRL game? 

3. What algorithms can we use in our new reduction?

A: A wide variety of sample-efficient “local search” algorithms.

A: Repeatedly solving a global exploration (RL) problem.

A: Actually, competing with the expert is “all you need”.

↳ NRPF , PSDP, HyG , Agrostic SasED



If ⏱: PSDP Competes Against Policies Covered by μ
πH = arg max

π∈Π
#sH∼μ[#aH∼π[ ft(sH, aH)]]

πh = arg max
π∈Π

#sh∼μ[#ah∼π[ ft(sh, ah) + #T(sh,ah)[V
πh+1:H
t (sh+1)]]]

For h ∈ [H − 1,H − 2,...,1] :

#sH∼μ

#sh∼μ

Lemma: Assume that at each time-step , we perform 

policy optimization up to -optimality: 
 

Then, 

  

h ∈ [H]
ε

#sh∼μ[#a∼π′ h(sh)[Q
πh+1:H
t (sh, a)] − #a∼πh(sh)[Q

πh+1:H
t (sh, a)]] ≤ εH

J(π′ 1:H, ft) − J(π1:H, ft) ≤ (((ε + )TV(μ, ρπ′ 

)) ⋅ H2)

#sh∼μ

μ



Proof: We proceed via the PDL:

J(π′ 1:H, ft) − J(π1:H, ft) =
H

∑
h

#sh,ah∼π′ 1:h [Qπh+1:H(sh, ah) − #a∼πh(sh)[Q
πh+1:H(sh, ah)]]

≤
H

∑
h

(ε + )TV(μh, ρπ′ 

h )) ⋅ 2 ⋅ (H − h)

≤ (ε + )TV(μ, ρπ′ 
)) ⋅ H2

≤
H

∑
h

#sh,ah∼μ [Qπh+1:H(sh, ah) − #a∼πh(sh)[Q
πh+1:H(sh, ah)]]

+H ⋅ )TV(μh, ρπ′ 

h )



If ⏱: What  should we reset to when ?μ πE ∉ Π

Widen the baseline distribution  to cover , 
 potentially by using suboptimal / offline data!

μ π⋆ ∈ Π
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