
17-740 Spring 2025

Algorithmic Foundations of Interactive Learning

Lecture 10: Approximate Policy Iteration

Lecturer : Drew Bagnell Scribe: Benji Li, Riku Arakawa, Vansh Kapoor

Notations In Drew’s lectures, we typically think about costs instead of rewards,1 and use

T to denote horizon instead of H.

10.1 Approximate Dynamic Programming

Depending on the level of knowledge about the environment we have access to (transition

dynamics, reward function, etc), as well as the amount of privilege we have in our experi-

mental setup (such as the ability to reset to a previous state), we can use different models

to sample and learn from our environment.

The following list includes different types of access models in RL.

1. Full probabilistic description of the environment: In this model, the algorithm is given

full description of {p(s′ | s, a), T, c(s, a)}. In a tabular MDP (with a moderate num-

ber of states and actions), we show in a prior lecture that value iteration provides a

straightforward way to learn the optimal value functions, given the full probabilistic

description of the environment.

2. Deterministic Simulative Model: In its simplest form, a deterministic simulative model

provides a function that maps (x, a)→ x′ deterministically. More generally, even when

the underlying dynamics are stochastic, we may still have access to a fixed random seed

within a computer program. This allows us to perfectly recreate trajectories, including

all randomness that occurred. Such access is common in computer simulations, where

reproducibility is desired.

3. Generative models: In this model, we have programmatic access to state transitions,

meaning we can place the system in any desired state and observe its evolution. This

enables flexible exploration and controlled experimentation, making it a powerful tool

for understanding and optimizing decision processes.

1However, he may also switch midway in the lecture.

10-1

4. Reset models: In this model, we can execute a policy or simulate rollouts at any time,

with the ability to reset the system to a known state or a predefined distribution

over states. This feature makes it particularly useful in controlled settings, such as

robotics experiments, where a robot can be repeatedly reset to stable configurations

for consistent evaluation and testing.

5. Single Trace: This model is the most challenging, where actions are irreversible, and

past states cannot be revisited. The trace model captures this fundamental con-

straint—the inability to ”reset” in real-world decision-making.

10.2 Approximating Value and Q Iteration

In this lecture, we will assume costs are deterministic to simplify notations. Recall the

Bellman optimality equations and the Bellman equations in terms of action value functions.

Q∗(s, a, t) = c(s, a) + Ep(s′|s,a)[min
a′

Q∗(s′, a′, t+ 1)]

Q∗(s, a, t) = c(s, a) + Total future value of acting optimally

Qπ(s, a, t) = c(s, a) + Total future value of following policy π

Qπ(s, a, t) = c(s, a) + Ep(s′|s,a)[Q
π(s, π(a, t+ 1), t+ 1)]

Note that one could derive Bellman equations in terms of state value functions as well. There

are some pros and cons.

Pros of Action Value Functions Computing the optimal policy from Q∗ is simpler than

extracting it from V ∗. With Q∗, we can obtain the optimal action using a straightforward

argmax, without needing to evaluate expectations or rely on a transition model. Once we

have Q∗, we don’t need a transition model at all to determine the optimal policy.

Cons of Action Value Functions Action-value functions require more memory than

state-value functions. While a value function only needs to store a value for each state

(|States|), an action-value function must store values for every state-action pair (|States| ×
|Actions|), leading to a significantly larger space requirement.

We will depart from the tabular setting in earlier lectures, where we can afford to enumerate

all state-action pairs. Instead, we will introduce approximations to algorithms like value

iteration and policy iteration. The first algorithm is Fitted Q-Iteration, an approximate

dynamic programming algorithm that learns approximate action-value functions from data.

10-2

Algorithm 1 Fitted Q-Iteration

Require: Dataset {(si, ai, ci, s′i)}Ni=1, horizon T

1: Initialize: Q(s, a, T)← 0, for all s ∈ S, a ∈ A
2: for t ∈ [T − 1, T − 2, . . . , 0] do

3: Dt ← ∅
4: for i = 1, . . . , N do

5: input← (si, ai)

6: target← ci +min
a′

Q
(
s′, a′, t+ 1

)
7: Dt ← Dt ∪ {(input, target)}
8: end for

9: Q(·, ·, t)← Regression(Dt)

10: end for

11: return Q

Challenges with Fitted Q-Iteration In class, we went through some interesting toy

examples presented in [1], in which Fitted Q-Iteration fails even in settings where the true

value function lives in the function class we perform regression over. Fitted Q-Iteration and

its counterpart, Fitted Value Iteration suffer from bootstrapping issues and sometimes fail

to converge. These methods approximate the value function inductively, propagating and

even amplifying errors, leading the algorithm to favor suboptimal actions.

The core issue lies in the minimization step when generating target values. This step can

push the policy toward states where the approximate value function underestimates the true

value, making them appear deceptively attractive. This bias is especially severe in sparsely

sampled regions of the state space, where poor generalization may result in policies favoring

undesirable states. From a learning theory perspective, this violates the i.i.d. assumption on

training and test samples.

10-3

10.3 Approximate Policy Iteration

One major problem encountered when approximating the optimal Q-function is that of

overestimation, which tends to amplify errors during the update process. In addition, there

is the issue of covariate shift. As the algorithm updates its policy based on the approximated

Q-function, the distribution of state-action pairs encountered during training shifts away

from the one initially used to learn the approximation. Consequently, when the improved

policy is deployed, it may encounter states that were underrepresented (or even absent) in

the training data. This mismatch between the training and deployment distributions further

exacerbates the error propagation and amplification issues.

A common remedy to mitigate these issues is to shift from using the optimal Q⋆ directly,

to instead employing a policy-dependent Q-function, denoted as Qπ. This leads naturally

to the use of policy iteration rather than direct optimization of Q⋆. Here, there are two

fundamental steps: policy evaluation and policy improvement.

10.3.1 Policy Evaluation

The algorithm is shown in Algorithm 2. Instead of Q⋆, we are trying to estimate Qπ.

Algorithm 2 Policy Evaluation

Require: Dataset {(si, ai, ci, s′i)}Ni=1, horizon T , discount factor γ

1: Initialize: Q(s, a, T)← 0, for all s ∈ S, a ∈ A
2: for t = T − 1, T − 2, . . . , 0 do

3: Dt ← ∅
4: for i = 1, . . . , N do

5: input← (si, ai)

6: target← ci + γ Qπ
(
s′i, π(s

′
i, t+ 1), t+ 1

)
7: Dt ← Dt ∪ {(input, target)}
8: end for

9: Q(·, ·, t)← Regression(Dt)

10: end for

11: return Q

10-4

10.3.2 Policy Improvement

When using an approximated Qπ(s, a, t) function to derive a policy, a straightforward ap-

proach is to select the action that maximizes the estimated value:

πproposed(s, t) = argmaxaQ
π(s, a, t) (10.1)

However, this direct maximization can still suffer from the same issues mentioned earlier

(e.g., overestimation or instability due to covariate shift). To ensure a more stable update,

we can interpolate between the current policy and the proposed policy. This approach is

known as conservative policy iteration. The updated policy is given by:

π′(s, t) = (1− α)π(s, t) + απproposed(s, t), (10.2)

where α ∈ (0, 1] is a step-size parameter that controls the degree of change in the policy at

each iteration.

10.4 Policy Search by Dynamic Programming

The previous algorithms discussed (Fitted Q-iteration and Conservative P.I.) rely on Bellman

back-up and approximation of the action value functions. Unlike value-based methods that

derive policies from value estimates, policy search by dynamic programming (PSDP) directly

optimizes the policy itself by going backward in time. The intuition is that if we have already

obtained the optimal (non-stationary) policies from time step (t+ 1) and onward, then the

optimization problem at time step t becomes much simpler: we can simply choose the action

that maximize the total reward given that we have committed to following the policies

{πt+1, . . . πT−1} for later steps. By unrolling the policy at every step until termination,

we could then avoid the issues of overestimation and compounding errors suffered by the

previous algorithms. As we deploy the policy at every time step until termination, we incur

a time complexity of O(T 2).

PSDP achieves the following performance bound.

Value Function Bound

Vπ(s0) ≥ Vπref
(s0)−

T−1∑
t=0

ϵ

∥∥∥∥∂πt
ref

µt

∥∥∥∥
∞

where ∂πt
ref (t), µ(t) denote the state distributions induced by the policies π, πref at time

step h, respectively, and ϵ relates to regression loss. We will give the analysis using the

performance difference lemma in the next lecture.

10-5

Algorithm 3 Policy Search by Dynamic Programming

1: Initialize: Q(s, a, T)← 0 for all s ∈ S, a ∈ A
2: for t = T − 1, . . . , 0 do

3: Dt ← ∅
4: for each state si ∈ S do

5: for each action aj ∈ A do

6: Compute target as the sum of future rewards:

target = sum of future rewards executing πt, πt+1, . . . , πT

7: Dt ← Dt ∪ {(si, aj, targetij)}
8: end for

9: end for

10: Q̂t ← Regress(Dt)

11: Update policy: πt = argmaxa Q̂t(s, a)

12: end for

13: return Q

References

[1] Justin Boyan and Andrew Moore. Generalization in reinforcement learning: Safely ap-

proximating the value function. Advances in neural information processing systems, 7,

1994.

10-6

	Approximate Dynamic Programming
	Approximating Value and Q Iteration
	Approximate Policy Iteration
	Policy Evaluation
	Policy Improvement

	Policy Search by Dynamic Programming

