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Figure 11.1: A visualization of the Performance Difference Lemma

11.1 Recap: PDL and PSDP

We first provide some more intuition for the performance difference lemma (PDL), which

bounds the difference between J(πref) and J(π). To simplify our reasoning, we will assume

that both policies and transitions are deterministic. As shown in Figure 11.1, the reference

policy πrefs will then visit a sequence of states s0, s1 . . . sH−1.

Suppose we are at time step h and at the expert’s state Sh. We can compare two trajectories:

1. Taking action πref(Sh) and then following π for the remaining steps.

2. Following π starting at this step and all future steps.

The difference in their values can be written as:

δh = Qπ
h(Sh, πref(Sh))−Qπ

h(Sh, π(Sh))

Now we do this comparison at state s0, then δ0 measures the value gap between the top

two trajectories in Figure 11.1. Similarly, δ1 measures the value gap between the second

and third trajectories on top. Observe that the gap we are interested in J(πref) − J(π) is
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precisely the value gap between the top trajectory (fully in blue) and bottom trajectory

(fully in yellow). By telescoping, we can write

J(πref)− J(π) =
∑
h

δh

This is precisely the deterministic version of PDL.

Now with this intuition and picture of PDL in mind, we can also gain an intuitive under-

standing of the policy search by dynamic programming (PSDP) algorithm. The algorithm

operates on the assumption that we are given a baseline distribution µh at every step h.

PSDP essentially ensures the quantity δh is small over the distribution µh of state sh. PSDP

achieves this via backward induction: at every step h, it optimizes the policy πh over the

state distribution µh given the learned policies πh+1, . . . , πH−1 at later steps. (Note that this

then becomes a one-step decision-making problem, or equivalently a classification problem.)

Concretely, it first computes the action value for each action a at each sampled state sh ∼ µh:

Qπ
h(sh, a) = r(sh, a) + Es′∼P (·|sh,a)[V

π
h+1(s

′)]

where V π
h+1(s

′) is the estimated value function at the next time step. Then, PSDP updates

πh to select action a that maximizes the estimated Qπ
h(sh, a).

Suppose the algorithm achieves ϵ error for each step over the distribution µh–that is,

Esh∼µh
[Qπ(sh, π(sh))] ≥ max

π′
Esh∼µh

[Qπ(sh, π
′(sh))]− ϵ

By change of measure from the baseline distribution to the state distribution visited by the

reference policy, we have

Esh∼d
πref
h

[Qπ(sh, π(sh))] ≥ max
π′

Esh∼d
πref
h

[Qπ(sh, π
′(sh))]− ϵ

∥∥∥∥dπref

h

µh

∥∥∥∥
∞

By PDL, we can bound the performance difference as

J(πref)− J(π) ≤
∑
h

ϵ

∥∥∥∥dπref

h

µh

∥∥∥∥
∞

11.2 Policy Gradients

Another paradigm for reinforcement learning is to directly optimize the policy, known as

Policy Gradients. In this approach, we parameterize the policy as

πθ(a | s) = π(a | s; θ),
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where θ denotes the policy parameters.

A trajectory (or episode) is defined as:

τ = (s0, a0, s1, a1, . . . , sH−1, aH−1),

and the performance objective is given by:

J(πθ) = Eτ∼πθ

[
H−1∑
h=0

rh

]
= Eτ∼πθ

[R(τ)] ,

where R(τ) denotes the return of trajectory τ .

11.2.1 High-level Idea

The fundamental idea behind policy gradient methods is to update the policy parameters

using gradient ascent. In its simplest form, the update rule is:

θt+1 = θt + η∇θJ(πθt),

where η is the learning rate (step-size). In order to apply gradient ascent, it is necessary to

make J(πθ) differentiable with respect to θ.

There are several ways to parameterize the policy:

1. Tabular Case:

When the state and action spaces are small enough to be represented in a table, the

policy can be defined as:

πθ(a | s) = exp (θs,a)∑
a′ exp (θs,a′)

.

2. Log-Linear Policies:

In this setting, a feature vector ϕs,a is associated with each state-action pair (s, a). The

policy is then defined as:

πθ(a | s) = exp (⟨θ, ϕs,a⟩)∑
a′ exp (⟨θ, ϕs,a′⟩)

.

3. Neural Softmax Policies:

For more complex scenarios, a neural network can be used to parameterize the policy:

πθ(a | s) = exp (fθ(s, a))∑
a′ exp (fθ(s, a

′))
,

where fθ(s, a) is a function approximated by a neural network.
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11.2.2 Warm Up

Consider a simplified objective function defined as:

J(θ) = Ex∼Pθ
[f(x)] .

Taking the gradient with respect to θ, we have:

∇θJ(θ) = ∇θ

∑
x

Pθ(x)f(x) =
∑
x

∇θPθ(x) f(x).

Using the identity

∇θPθ(x) = Pθ(x)∇θ lnPθ(x),

we obtain:

∇θJ(θ) =
∑
x

Pθ(x)∇θ lnPθ(x) f(x) = Ex∼Pθ
[f(x)∇θ lnPθ(x)] .

11.2.3 Policy Gradient Theorem

Theorem 1 (Policy Gradient Theorem)

(REINFORCE) ∇θJ(πθ) = Eτ∼dπθ

[
∇θ

(
H−1∑
h=0

ln πθ(ah | sh) ·R(τ)

)]
.

Equivalently,

(ADVANTAGE) ∇θJ(πθ) = Eτ∼dπθ

[
∇θ

(
H−1∑
h=0

lnπθ(ah | sh) · Aπθ
h (sh, ah)

)]
where Aπθ

h (sh, ah) = Qπθ
h (sh, ah)− V πθ(sh).

Proof:

∇θJ(πθ) = Eτ [∇θ ln pθ(τ) ·R(τ)]

= Eτ [∇θ(lnµ(s0) + ln πθ(a0 | s1) + · · ·+ ln πθ(aH−1 | sH−1) + ln p(sH | aH−1, sH−1)) ·R(τ)]

= Eτ

[
∇θ

(
H−1∑
h=0

lnπθ(ah | sh) ·R(τ)

)]
.

Interpretation
∑

h ln πθ(ah | sh) is a maximum likelihood estimation (MLE). Therefore,∑
h lnπθ(ah | sh)A(sh, ah) can be viewed as some kind of advantage-weighted MLE.
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