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1.1 Policy Gradient

Policy Value

Evaluate

Improvement

Policy Gradient:

Direct Optimization

In reinforcement learning, many algorithms, such as policy iteration, revolve around two key

objects: policies and value functions. Policy iteration, for instance, alternates between policy

evaluation and policy improvement. In contrast, policy gradient methods primarily focus

on directly optimizing policy parameters. While we will momentarily step away from the

interplay between value functions and policies, the second part of this lecture will reintroduce

value functions as a tool for variance reduction.

To recep policy gradient methods improve J(πθ) by performing policy gradient ascent update:

θ = θ + η∇θJ(πθ).

A few key points to consider are that J(πθ) is almost always non-convex and must be

estimated using sampled data. Methods that directly optimize the policy are particularly

useful in scenarios where maintaining an explicit value function is unnecessary or impractical.

This is often the case in applications to language models.
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1.2 Notation

The policy parameterized by θ is represented as πθ(a|s) = π(a|s, θ). Pθ represents the distri-

bution induced by πθ over trajectories

τ = (s0, a0, r0, · · · , sH−1, aH−1, rH−1, SH).

The objective function is defined by

J(πθ) = Eτ∼πθ

[
H−1∑
h=0

rh

]
︸ ︷︷ ︸

R(τ)

.

1.3 Policy Gradient Theorem

The REINFORCE algorithm computes the gradient by

(REINFORCE) : ∇θJ(πθ) = Eτ∼Pθ

[
R(τ) ·

(
H−1∑
h=0

∇θ log(π(ah|sh))

)]
.

Observations:

H−1∑
h=0

∇ log πθ(ah|sh) ·

(
H−1∑
h=0

rh

)

=
H−1∑
h=0

∇ log πθ(ah|sh) ·

(
H−1∑
h=0

rh

)

=
H−1∑
h=0

∇ log πθ(ah|sh) ·


h−1∑
h′=0

rh′︸ ︷︷ ︸
A

+
H−1∑
h′=h

rh′︸ ︷︷ ︸
B

 .

The term A is unaffected by ah, and the term b in expectation is Qπθ
h (sh, ah). When we take

the expectation outside, the term A would be zero (as we will show later). Hence, we can

derive the Q-version of REINFORCE as

(Q-Version) : ∇θJ(πθ) = Eτ∼Pθ

[
H−1∑
h=0

Qπθ
h (sh, ah)∇θ log(π(ah|sh))

]
.

1-2



Now if b(s) is unaffected by the action a, we can derive

Ea∼π(·|s) [b(s) · ∇θ log π(a|s)] =
∑
a

b(s) · π(a|s) · 1

π(a|s)
∇θ(π(a|s)

= b(s)
∑
a

∇θπθ(a|s)

= b(s)∇θ

∑
θ

πθ(a|s)

= 0.

The last equation is because
∑

a π(a|s) = 1. Hence, we can subtract a baseline bh(s) = Vh(sh)

that is independent with ah, and get the A-version of REINFORCE as

(A-Version) : ∇θJ(πθ) = Eτ∼Pθ

[
H−1∑
h=0

Aπθ
h (sh, ah)∇θ log(π(ah|sh))

]
,

where Aπθ
h (sh, ah) = Qπθ

h (sh, ah)− V πθ
h (sh).

1.4 Estimation of Policy Gradient

In practice, we cannot usually get the exact full gradient. Hence, we need to derive an

estimator of the policy gradient.

1.4.1 Monte-Carlo Estimation

Using Monte-Carlo estimation, we first roll out N trajectories

{τi = (s
(i)
0 , a

(i)
0 , r

(i)
0 , · · · , s(i)H−1, a

(i)
H−1, r

(i)
H−1, s

(i)
H )}i∈[N ]

following the policy πθ. Then, the gradient can be estimated by

∇θJ(πθ) ≈
1

N

N∑
i=1

∑
h

∇θ log πθ(a
(i)
h |s

(i)
h ) ·R(τi).

You can also get the Q function by Q̂
(i)
h =

∑H−1
h′=h r

(i)
h′ and estimate the gradient by

∇θJ(πθ) ≈
1

N

N∑
i=1

∑
h

∇θ log πθ(a
(i)
h |s

(i)
h ) · Q̂(i)

h .

However, the Monte-Carlo sampling method often results in a gradient estimate with high

variance. We will now introduce methods that reduce variance by introducing learned value

functions Vϕ as a baseline.
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1.4.2 Actor-Critic Method

Actor / Policy

πθ

Critic / Value

Vϕ(s)

Evaluate

Improvement

We define the actor/policy as πθ, and the critic/value as Vϕ(s). In practice, the actor and

the critic are both modeled by neural networks.

When we have the critic/value function, we can estimate the policy gradient as

∇θJ(θ) ≈
H−1∑
h=0

∇θ log π(ah|sh) ·

rh + Vϕ(sh+1)− Vϕ(sh)︸ ︷︷ ︸
Temporal Difference Error

 ,

where the Temporal Difference (TD) error is an estimate of Aπθ
h (sh, ah).

Note that the TD error is also an estimate of the Bellman error : V (s)−Ea∼π,s′∼P [r(s, a) + γV (s′)].

This motivates an optimization objective for the critic, who tries to minimize the square loss

given by

L(ϕ) = E
[
(rh + Vϕ(sh+1)− Vϕ(sh))

2] .
The critic will optimize this objective using the semi-gradient method which treats Vϕ(sh+1)

as a constant, ignoring its dependency when computing the gradient.

The full pseudocode is shown in the following algorithm:

Algorithm 1 Actor-Critic Method
1: Input: Learning rate ηϕ, ηθ.

2: for episode = 1, 2, · · · , N do

3: for h = 1, 2, · · · , H − 1 do

4: Critic Update:

5: δh = rh + Vϕ(sh+1)− Vϕ(sh)

6: ϕ← ϕ+ ηϕ · δh∇ϕVϕ(sh).

7: Actor Update:

8: θ ← θ + ηθ · δh∇θ log πθ(ah|sh).
9: end for

10: end for
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Suppose we execute the policy πθ to get a trjaectory:

πθ → s0, a0, r0, · · · , r1, · · · , r2, · · · , rH−1, SH .

At each step h ∈ [H − 1], you can receive a new reward rh and get the (empirical) value

function Vϕ(sh), and get the one-step advantage function rh−1 + Vϕ(sh)− Vϕ(sh−1).

One alternative of this one-step advantage function is called the Multi-step advantage

function:

A(n)(sh, ah) = rh + · · ·+ rh+n−1 + Vϕ(sh+n)− Vϕ(sh).

This gives us some form of interpolation between the Monte-Carlo estimation and the TD(0).

1.4.3 Generalized Advantage Estimation

We provide a more generalized advantage estimation Âh(λ) as

Âh(λ) = δh + λδh+1 + · · ·+ λH−1−hδH−1.

When λ = 0, Âh(0) is the TD error, corresponding to the Actor-Critic Method.

When λ = 1, Âh(1) is the Monte-Carlo Estimation Approach.

With λ = 0, the estimate is a one-step TD error—highly biased due to its short-term focus

but with low variance from stable updates. At λ = 1, it becomes a Monte Carlo estimator,

reducing bias by considering full returns but increasing variance from accumulated stochastic

noise. Hence, Âh(λ) is a trade-off between the high-bias estimate TD error and the high-

variance Monte-Carlo estimator.
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