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1.1 Introduction

This lecture presents three views of how one might arrive at the Natural Policy Gradient

(NPG) algorithm.

• KL Regularization for stability

• Least squares regression

• Soft Policy Iteration (Hedge at every state)

Then we will present “practical” algorithms inspired by NPG

• Trust Region Policy Optimization (TRPO)

• Proximal Policy Optimization (PPO)

1.2 Natural Policy Gradient

Recall that

∇θJ(πθ) = Eτ∼Pθ

[
H−1∑
h=0

Aπθ
h (sh, ah)∇θ log(π(ah | sh))

]
= H · Eh∼U [H−1],sh∼d

πθ
h ,ah∼πθ(sh)

[Aπθ
h (sh, ah)∇θ log πθ(ah | sh)].

Also recall the policy gradient update:

θt+1 ← θt + η∇θJ(πθ).
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1.2.1 KL Regularization View

The regularization view of the above equation is

θt+1 = argmax
θ
⟨∇θJ(πθt), θ⟩ −

1

2η
∥θ − θt∥2.

Notice that the above is a concave function. We can show that the regression view is

equivalent to the policy gradient by solving this concave maximization problem, i.e. taking

the derivative with respect to θ and setting it equal to zero.

We can explicitly enforce a hard limit on how far the parameters move by adding a constraint,

giving us the constrained optimization view:

max
θ
⟨∇θJ(πθt), θ⟩, s.t. ∥θ − θt∥22 ≤ δ.

Both the regularization view and constrained optimization view are looking at changes in

parameter space. However, it can very well be the case that two sets of very different

parameters lead to near-identical policies.

A more principled approach would instead constrain the differences between policies them-

selves. We can do this by constraining theKL-divergence between the old and new policies,

instead of the ℓ2 norm of their parameters:

max
θ

J(πθ), s.t.
1

H
KL(Pπθt∥Pπθ) ≤ δ,

By decomposing the KL divergence, we can get

1

H
KL(Pπθt∥Pπθ) =

1

H

∑
τ

Pθt(τ) log
Pθt(τ)

Pθ(τ)

=
1

H

∑
τ

Pθt(τ)
H−1∑
h=0

log
πθt(ah | sh)
πθ(ah | sh)

= E(sh,ah)∼d
πθt

[
log

πθt(ah | sh)
πθ(ah | sh)

]
:= ℓ(θ).

How can we approximate ℓ(θ)? We can use a Taylor expansion of ℓ(θ) around θ = θt:

ℓ(θt) = 0

∇θℓ(θ) = 0|θ=θt

∇2
θℓ(θt) = E

[
∇θ log πθt(ah | sh)∇θ log πθt(ah | sh)⊤

]
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The Hessian ∇2
θℓ(θt) is also referred to as the Fisher Information Matrix, denoted as F (θt).

Hence, by the second-order approximation, we can estimate ℓ(θ)

1

H
KL(Pπθt∥Pπθ) ≈ (θ − θt)

⊤F (θt)(θ − θt).

Thus, the update rule of natural policy gradient (NPG) can be written as

θt+1 ← θt + ηF †∇θJ(πθt),

where F † is the Moore-Penrose Inverse.

1.2.2 Regression View

We can also view NPG as solving a weighted least squares regression problem.

Lemma 1 Define

w∗ = argmin
w

E(sh,ah)∼dπθ

Aπθ
h (sh, ah)︸ ︷︷ ︸

label

−w⊤∇θ log πθ(ah | sh)︸ ︷︷ ︸
feature

2 .

Then, F †(θ)∇θJ(πθ) = Hw∗.

Proof. By first order condition:

E
[(
Aπθ

h (sh, ah)− (w∗)⊤∇θ log πθ(ah | sh)
)
∇θ log πθ(ah | sh)

]
= 0

It is equivalent to

E [(Aπθ
h (sh, ah))∇θ log πθ(ah | sh)]︸ ︷︷ ︸

1
H
∇θJ(πθ)

= E [∇θ log πθ(ah | sh)∇θ log πθ(ah | sh)⊺]︸ ︷︷ ︸
Fisher Matrix F (θ)

w∗.

Hence we have F †(θ)∇θJ(πθ) = Hw∗.

The lemma above shows that the NPG update is indeed a regression problem under some

linear transformation.
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Invariance under reparameterization. The regression view of NPG also provides a way

to demonstrate that NPG is invariant under affine reparameterization. An affine reparame-

terization of the policy parameters transforms θ via an invertible affine map:

θ′ = Mθ + b

where M ∈ Rd×d is an invertible matrix, and b ∈ Rd is an arbitrary translation vector. In

other words, the policy can be written as π′(θ′) = π(M−1(θ′ − b)) = π(θ). Suppose we have

θ′t = Mθt + b and πθ′t
= πθt (that is the parameterized policies are the same). By the chain

rule of calculus, we have

∇θ′ log π
′
θ′(a | s) |θ′=θ′t

= M−1∇θ log πθ(a | s) |θ=θt .

Since least squares regression is invariant under linear transformations of the feature space,

the transformation ∇θ′ log π
′
θ′(a | s) = M−1∇θ log πθ(a | s) does not change the optimal

solution w∗ when properly parameterized. In particular, the transformed solution becomes:

w′∗
t = Mw∗

t

In other words, after an NPG update, we continue to have θ′t+1 = Mθt+1+b. This invariance

property is also called covariant.

As an exercise, you can show that policy gradient does not enjoy this invariance property.

1.2.3 Soft Policy Iteration

Assume the softmax policy parameterization in the tabular MDP setting: πθ(ah | sh) ∝
exp(θsh,ah). Then, we have the following lemma showing the relationship between NPG and

SPI.

Lemma 2 The update rule θt+1 ← θt + ηHAt is equivalent to

πt+1(ah | sh) ∝ πt(ah | sh) · exp(ηHAt
h(sh, ah)).

Thus, we can view NPG as running a copy of the hedge algorithm at every state sh.

To show this result, we can look at the regression view of the NPG algorithm and find out

that the advantage function is a solution to the least squares regression problem.
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1.3 “Practical” Algorithms

1.3.1 Trust Region Policy Optimization (TRPO)

TRPO is the precursor to PPO, motivated by the NPG update. TRPO solves a constrained

optimization problem that explicitly bounds the KL divergence between the updated policy

and the current policy:

max
θ

E(s,a)∼d
πθt

[
πθ(a|s)
πθt(a|s)

Aπθt (s, a)

]
s.t. DKL(πθt ||πθ) ≤ δ

The objective function is called surrogate advantage objective, which was also used in conser-

vative policy iteration covered in a previous lecture. One way to make sense of the objective

function is to start with the performance difference lemma:

J(πθ)− J(πθt) = HEs∼dπθ

[∑
a

(πθ(a | s)− πθt(a | s))Qπθt (s, a)

]
To ensure policy improvement, we want the performance difference above to be positive. An

immediate difficulty for optimizing this quantity is that the expectation is over the state

distribution dπθ induced by the new policy πθ. Since TRPO ensures that the KL divergence

between the new and old policies is small, one strategy is to replace the state distribution

by dπθt . This gives us

J(πθ)− J(πθt) = HEs∼d
πθt

[∑
a

(πθ(a | s)− πθt(a | s))Qπθt (s, a)

]

= HEs∼d
πθt ,a∼πθt

(s)

[(
πθ(a | s)− πθt(a | s)

πθt(a | s)

)
Qπθt (s, a)

]
= HEs∼d

πθt ,a∼πθt
(s)

[(
πθ(a | s)
πθt(a | s)

)
Aπθt (s, a)

]
which is exactly the objective function in TRPO (up to a factor of H). Similar to NPG,

TRPO will also approximate the KL constraint with the Fisher information matrix, which

leads to a quadratic constraint

(θ − θt)
⊤F (θt)(θ − θt) ≤ δ

Then TRPO proceeds to solve the quadratically constrained problem by solving the La-

grangian (which we saw in the information theory lecture). Similar to NPG, this step
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requires computing F †∇θJ(πθt), which can be costly due to the computation of a matrix

inverse. TRPO instead solves the associated linear system:

Fx = ∇θJ(πθt)

using the conjugate gradient method, which iteratively finds x without inverting F .

1.3.2 Proximal Policy Optimization (PPO)

PPO is a somewhat “hacky” approximation of TRPO. The motivation is to prevent the policy

from changing too much without doing explicitly KL-constrained optimization. Instead,

PPO introduces clipping :

R̂clip = E(s,a)∼d
πθt

clip
(
πθ(a|s)
πθt(a|s)

)
Aπθt (s, a)︸ ︷︷ ︸

L(θ,s,a)


where clip projects the value into the interval [1− ϵ, 1 + ϵ], and ϵ is a small positive hyper-

parameter (e.g., 0.1 or 0.2).

The PPO objective then becomes:

R̂PPO = E(s,a)∼d
πθt

[
min

{
πθ(a|s)
πθt(a|s)

Aπθt (s, a), clip

(
πθ(a|s)
πθt(a|s)

)
Aπθt (s, a)

}]
We analyze the effect of the min operation separately for positive and negative advantage

values. Let the probability ratio be defined as:

rθ(s, a) =
πθ(a|s)
πθθt

(a|s)
,

Case 1: Positive Advantage (A(s, a) > 0) If the advantage is positive, we prefer to

increase the probability of the chosen action. The objective L(θ, s, a) simplifies to:

A(s, a)min (rθ(s, a), 1 + ε) .

Analyzing the behavior based on the value of rθ:

L(θ, s, a) =

{
rθ(s, a)A(s, a), if rθ(s, a) ≤ 1 + ε

(1 + ε)A(s, a), if rθ(s, a) > 1 + ε

Interpretation:
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• If the probability ratio is within the threshold (≤ 1 + ε), the objective increases pro-

portionally as we increase rθ.

• If rθ surpasses 1+ε, the objective saturates at (1+ε)A(s, a). Thus, there is no incentive

for the policy to further increase this action’s probability.

Case 2: Negative Advantage (A(s, a) < 0) If the advantage is negative, ideally we

want to decrease the probability of the chosen action. The objective is L(θ, s, a) simplifies

to:

A(s, a)max (rθ(s, a), 1− ε) (since A(s, a) < 0 reverses the inequality).

We analyze based on the value of rθ:

L(θ, s, a) =

{
rθ(s, a)A(s, a), if rθ(s, a) ≥ 1− ε

(1− ε)A(s, a), if rθ(s, a) < 1− ε

Interpretation:

• If the probability ratio is within the lower bound (≥ 1− ε), the objective improves as

we reduce rθ, since this makes rθA(s, a) less negative (larger).

• If rθ falls below 1 − ε, the objective hits the floor (1 − ε)A(s, a). Thus, reducing the

probability further yields no additional improvement.

The min operation together with the clip operation ensures stable and conservative updates

by limiting the magnitude of policy changes in each optimization step.
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