
17-740 Spring 2025

Algorithmic Foundations of Interactive Learning

Mar 11: Model-Based RL

Lecturer : Gokul Swamy Scribe: Yuemin Mao, Miaosi Dong, Khush Agrawal,

Eryn Ma

Model-based RL is a subclass of reinforcement learning where the agent learns a dynamics

model of the environment. This model can be used to simulate future states, calculate

rewards, and optimize action selection accordingly without ever interacting with the actual

environment.

15.1 What’s a “model”?

Recall a Markov Decision Process (MDP) that can be defined as:

M = {S (state space)

A (action space)

r (reward function)

T (transition dynamics)

H (horizon)

ρ0 (initial state distribution)}

The goal of model-based RL is to learn the transition dynamics (T) of the environment. This

model can be used to evaluate trajectories without interacting with the actual environment.

1. An MDP includes a transition function / dynamics T : S × A → ∆(S), which has

|S|2|A| elements to learn. This is a lot more than learning a policy π : S → ∆(A),

which only has |S||A| elements, increasing the data required.

2. Generative model access to an MDP allows an agent to query the “model” at any

preferred state-action pair to get predictions of the next state (i.e. samples from

the next state distribution). Learning a dynamics model gives us such access to the

underlying MDP we’re trying to solve.

15-1

3. Model-based RL (MBRL) is performing RL in an MDP M’ is M but with ground truth

T replaced with learned T’, which is approximated. Alternatively, it could also involve

test time planning (e.g., model predictive control) for finding actions that optimize an

objective function inside M’ – we will discuss this in detail in a future lecture.

15.2 What makes a good model?

A perfect model would be the one returning predictions exactly the same as the ground truth.

However, in the real-world, learning problems are prone to errors. Since we cannot model

everything accurately, it is better to give more importance to the regions of the state and

action spaces visited by the policy we’re evaluating. To summarize, a “good” model is one

that allows us to accurately evaluate the performance of a policy: a policy looks performant

in a good model if and only if it is performant in the real world. We can make this intuition

more precise via the following lemma, which tells us that if we’ve learned a model that can

accurately predict state transitions everywhere 1, we will achieve the preceding desiderata.

Lemma 1 (Simulation Lemma, Kearns & Singh, 2002) Suppose that for all (s, a) in

state action spaces, the total variation distance between the learned model and the ground

truth is less than ϵ,
∑

s′ |T ′(s′|s, a)− T (s′|s, a)| ≤ ϵ. Then for any policy π : S → A, we

have

|J(π,M)− J(π,M ′)| ≤ H(H − 1)

2
ϵ (15.1)

Proof: If the following inequality holds for all states, then it also holds in expectation

over the initial state distribution, since expectation preserves inequalities. Therefore, in the

proof, we bound the value difference pointwise over states, which allows us to derive a bound

on the performance difference by averaging these pointwise bounds over the initial states:

|V π
h (s,M)− V π

h (s,M
′)| ≤ (H − h)ϵ+

∣∣V π
h+1(s,M)− V π

h+1(s,M
′)
∣∣ (15.2)

We prove Eqn. 15.2 using backwards induction. The following lemmas are used in the proof:

Lemma 2 (Triangle Inequality) |a− b| = |a− c+ c− b| ≤ |a− c|+ |c− b|

Lemma 3 (Holder’s Inequality)
∑

x p(x)g(x) =< p, g >≤ ∥p∥1 · ∥g∥∞
1One can easily modify this proof to add an expectation over any desired state distribution.

15-2

Base Case:

h = H ⇒ LHS = 0 ≤ 0 = RHS

Inductive Hypothesis: Assume for h+ 1, we have:

|V π
h+1(s,M)− V π

h+1(s,M
′)| ≤ (H − h− 1)ϵ.

Inductive Step: Expanding the value functions via Bellman equation:

|V π
h (s,M)− V π

h (s,M
′)| =

∣∣Ea∼π(s),s′∼T (s,a)[r(s, a) + V π
h+1(s

′,M)]

−Ea∼π(s),s′∼T ′(s,a)[r(s, a) + V π
h+1(s

′,M ′)]
∣∣

The reward function does not depend on the next states, so the expectation of r(s, a) in

both terms are the same.

=
∣∣Ea∼π(s),s′∼T (s,a)[����r(s, a) + V π

h+1(s
′,M)]

−Ea∼π(s),s′∼T ′(s,a)[����r(s, a) + V π
h+1(s

′,M ′)]
∣∣

For simplicity, we can upper bound the expectation with the maximum over actions.

≤max
a

∣∣∣∣∣∑
s′

T (s′|s, a)V π
h+1(s

′,M)− T ′(s′|s, a)V π
h+1(s

′,M ′)

∣∣∣∣∣
We now proceed by applying Lemma 2.

Let a =
∑

s′ T (s
′|s, a)V π

h+1(s
′,M), b =

∑
s′ T

′(s′|s, a)V π
h+1(s

′,M ′), c =
∑

s′ T
′(s′|s, a)V π

h+1(s
′,M).

Then, we have:

≤max
a

∣∣∣∣∣∑
s′

T (s′|s, a)V π
h+1(s

′,M)− T ′(s′|s, a)V π
h+1(s

′,M)

∣∣∣∣∣
+

∣∣∣∣∣∑
s′

T ′(s′|s, a)V π
h+1(s

′,M)− T ′(s′|s, a)V π
h+1(s

′,M ′)

∣∣∣∣∣
Next, we apply Lemma 3. Define p = T (s′|s, a)− T ′(s′|s, a), q = V π

h+1(s
′,M). Then, |p| ≤ ϵ

by assumption, and the maximum value of the value function, |q|, is at most H − h, hence

the first term is upper bounded by ϵ(H − h).

15-3

By assumption, the 2nd term is upper bounded by the last step. Intuitively, this is because

if we have a bound on the probability of a difference and the maximum amount we can pay

per difference, we can in the worst case pay the product of those two quantities.

≤max
a

∣∣∣∣∣∣∣∣∣∣
∑
s′

T (s′|s, a)V π
h+1(s

′,M)− T ′(s′|s, a)V π
h+1(s

′,M)︸ ︷︷ ︸
≤ϵ(H−h)

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
∑
s′

T ′(s′|s, a)V π
h+1(s

′,M)− T ′(s′|s, a)V π
h+1(s

′,M ′)︸ ︷︷ ︸
≤value of the last step

∣∣∣∣∣∣∣∣∣∣
We can now expand out the recursion over h to complete the proof:

|J(π,M)− J(π,M ′)| ≤
H∑
h

(H − h)ϵ =
H(H − 1)

2
ϵ.

15.3 How do we fit a good model?

Prima facie, one might like the model to be accurate on the current policy’s state distribution.

However, just doing this is not enough. Once we learn a model, we also run RL steps that

optimize the policy using this approximated model. When the model is inaccurate, the RL

step might exploit such inaccuracies and lead to poor performance in the real world.

This can work extremely poorly. Similar to approximate policy iteration, and the follow the

leader counter-example, the model might switch back and forth repeatedly, with the RL step

never finding a good policy. We now sketch such an example on a tree-structured MDP.

M⋆ in Figure 15.1 represents the real world. The optimal policy πE is highlighted in green.

Assume the initial policy we start off with goes right twice, as shown by the highlighted

red trajectory in M0 (Figure 15.2). We’ll likely be accurate on states seen in the training

distribution, causing us to correctly predict the green label of 0 for going right twice. How-

ever, we can be arbitrarily bad on states we didn’t train on – for example, we can predict

a reward of 1 for going right and then left, as we do in M0. The optimal policy inside M0

would then exhibit this behavior, effectively exploiting the inaccuracies in the learned model

that happen in OOD states. Then, based on the new policy, we could learn some new M1

15-4

Figure 15.1: The optimal policy πE goes left twice and recieves reward 1.

Figure 15.2: Since doing RL exploits the model and can cause it to be queried on states

outside of its training distribution, only training on the latest data might lead to a situation

where we oscillate between inaccurate models and suboptimal policies. We use a red highlight

to visualize the policy used to generate the training data and a green leaf node label to denote

we got this reward correct. We use red to denote OOD leaf nodes where we incorrectly predict

the reward value. Observe that the optimal policy in M0 induces M1 and vice-versa.

(Figure 15.2). Again, we’re correct in-distribution, but could be overly optimistic on the

value we’d receive of going right twice. Observe that the optimal policy in M1 could induce

M0, so we could just oscillate between these two models and their corresponding optimal

policies without learning anything useful. Intuitively, this is because a model trained on a

single round of data can be too optimistic on unseen states.

Instead, we could aggregate all the past datasets we have observed. This is using a no-regret

algorithm over models (specifically, Follow the Regularized) Leader) to deal with the ”best

response” over policies. This is not explicitly game-solving, but the no-regret principle can

help us deal with the distribution shift caused by RL exploiting the model. While Mno−regret

will accurately predict 0 for the two paths it has seen (visualized in Figure 15.3), since it has

never observed any data of optimal policy πE, it could still underestimate the value of going

left twice. Intuitively, without seeing data from the expert, we can be overly pessimistic

15-5

Algorithm 1 No-Regret MBRL

1: Initialize some π0, T̂0

2: for t = 1, ..., T do

3: (1) Roll out πt−1 in T ∗ to collect Dt

4: (2) Fit T̂t on
⋃t

τ=1 Dτ

5: (3) Run RL inside T̂t to compute πt

6: → πt = argmaxπ∈Π J(π,Mt) “best response”

7: end for

Figure 15.3: A data aggregation data method on the other hand will assign the correct

reward values to both the states and not demonstrate an oscillating behavior.

about good OOD trajectories. So, while no-regret model fitting guarantees us correct policy

evaluation (i.e. we correctly predict both policies get zero reward), it doesn’t guarantee we’ll

compute a policy via RL in the model that is anywhere close to the quality of πE

Now say if we have samples from πE is that, how could we use them? Even if we fit our model

perfectly on the expert data, if our policy distribution is different (i.e., taking the right path

instead of left from the top node), our model will still behave poorly on unseen paths. One

way to resolve this tension is to combine expert data with our policy distribution, which is

essentially DAgger for MBRL, with extra expert data to reduce the exploration burden on

the learner. Fitting the model on the hybrid distribution leads to Agnostic SysID:

Algorithm 2 Agnostic System Identification (Ross and Bagnell 2012)

1: Initialize some π0, T̂0

2: for t = 1, ..., T do

3: (1) Roll out πt−1 in T ∗ to collect Dt

4: (2) Fit T̂t on (
⋃t

τ=1Dτ)
(
1
2

)
+ 1

2
DE

5: (3) Run RL inside T̂t to compute πt

6: → πt = argmaxπ∈Π J(π,Mt) “best response”

7: end for

15-6

Intuitively, we need to be able to accurately predict the consequences of our actions (both good

and bad) to learn a good policy. Fitting the model on the mixture of expert and learner data

helps balance optimism and pessimism without computational complexity. We will further

explore this idea of hybrid RL in the model-free setting during the following guest lecture.

We can provide some more intuition for why this hybrid model-fitting procedure ensures

that learn a model such that policies look good in the model if and only if they are good in

the real world via the following three-term decomposition:

J(πE,M)− J(π,M) = (J(πE,M)− J(πE,M
′)) → inaccuracy on πE

+ (J(π,M)− J(π,M ′)) → inaccuracy on π

+ (J(πE,M
′)− J(π,M ′)) → planning error

If the RL solver of our model is perfect, (J(πE,M
′) − J(π,M ′) ≤ 0 and the inner term

will be non-negative. If we also fit the model well on learner and expert state distributions,

(J(πE,M), J(πE,M
′))+((J(π,M)−J(π,M ′)) will also be small via the Simulation Lemma.

Thus, this idea is sometimes affectionately referred to as the double simulation lemma. In

the Agnostic SysID paper, Ross & Bagnell use an upper bound on the Simulation Lemma

to derive loss functions for the no-regret model fitting procedure on hybrid data (off-policy

expert data + on-policy learner data), which boil down to standard MLE on the hybrid data.

15.4 How do we scale this idea?

To address the key challenge that modeling pixels is hard, we can do things in latent space

by using sequential VAEs like Dreamer [1]. The training process of Dreamer is illustrated

as Figure 15.4. First, an encoder maps sensory inputs xt to stochastic representations zt.

Then, a sequence model with recurrent state ht predicts the sequence of these representations

given past actions at−1. The concatenation of ht and zt forms the model state from which

we predict rewards rt and episode continuation flags ct ∈ {0, 1} and reconstruct the inputs

to ensure informative representations:

Sequence Model ht = fϕ(ht−1, zt−1, at−1)

Encoder zt ∼ qϕ(zt|xt, ht)

Dynamic Prediction ẑt ∼ pϕ(ẑt|ht)

Reward predictor: r̂t ∼ pϕ(r̂t|ht, zt)

Continue predictor: ĉt ∼ pϕ(ĉt|ht, zt)

Decoder x̂t ∼ pϕ(x̂t|zt, ht)

Dynamic Prediction ẑt ∼ pϕ(ẑt|ht)

15-7

Figure 15.4: Training Process of Dreamer

Question 1: Why we need a decoder?

• Without a decoder, the learned latent representations are at risk of collapsing to trivial

or degenerate solutions—such as constant vectors—since there is no explicit constraint

enforcing the retention of meaningful information from the original observations. In

such a scenario, the latent state may become uninformative. Essentially, the decoder

acts as a grounding mechanism, ensuring that the latent representation remains coupled

with the actual observations.

Question 2: Why do we need alternative objectives beyond a decoder?

• While decoders are commonly used to encourage latent representations to retain input

information, they can be inefficient for decision-making tasks. For example, recon-

structing the entire input image may force the model to encode irrelevant details—such

as leaves blowing in the wind—that have no impact on the task, such as driving. This

leads to representations that are perceptually rich but behaviorally redundant.

• To obtain minimal sufficient representations for reinforcement learning, alternative

objectives are needed. One effective approach is to replace the decoder with an inverse

dynamics model, which predicts the action taken between two latent states [2]. This

encourages the model to retain only information that is influenced by agent behavior,

naturally filtering out task-irrelevant factors, leading to more minimal representations.

15-8

References

[1] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse

domains through world models. arXiv preprint arXiv:2301.04104, 2023.

[2] Alex Lamb, Riashat Islam, Yonathan Efroni, Aniket Didolkar, Dipendra Misra, Dylan

Foster, Lekan Molu, Rajan Chari, Akshay Krishnamurthy, and John Langford. Guaran-

teed discovery of control-endogenous latent states with multi-step inverse models, 2022.

15-9

	What's a ``model''?
	What makes a good model?
	How do we fit a good model?
	How do we scale this idea?

