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16.1 Introduction

16.1.0.1 Offline data

Some examples of offline data are YouTube videos and teleoperation data for robotics.

We sample s, a ∼ µ, r = R(s, a) (assume deterministic reward), s′ ∼ P (·|s, a)

Unlike imitation learning, we do not place any guarantee on the quality of the distribution

µ and the samples – they can be meaningfully suboptimal. However, we do see rewards.

16.1.0.2 Value learning

Notation. We consider finite horizon Markov Decision Process M = {S,A,H,R, P, d0}. We

define a policy π where πh : S 7→ ∆(A) and let dπ denotes the visitation distribution induced

by π at step h. Let V π(s) = E[
∑H−1

τ=0 rτ |π, sh = s] and Qπ
h(s, a) = E[

∑H−1
τ=0 rτ |π, sh = s, ah =

a] be value functions and let Q⋆ and V ⋆ denote the optimal value functions. We will use the

following pieces of notation repeatedly:

Definition 1 Let πQ to be the greedy policy w.r.t. a state-action value function Q.

πQ(s) = argmax
a∈A

Q(s, a) (16.1)

Definition 2 We define the Bellman operator T such that for any f : S × A 7→ R,

T f(s, a) = E[r(s, a)] + Es′∼P (s,a) max
a′

f(s′, a′). (16.2)

Recall that T Q⋆ = Q⋆ – the optimal Q function is a fixed point of the Bellman Operator.

Thus, one way to learn a good Q function is to minimize the Bellman error – the difference

between the two sides of the fixed point condition. More formally,
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Algorithm 1 Q-Value Iteration

Require: MDP M = {S,A,H,R, P, d0}
Initialize QH(s, a) = 0 for all (s, a) ∈ S × A

for h = H − 1, H − 2, . . . , 0 do

for each (s, a) ∈ S × A do

Qh(s, a)← T Qh−1

end for

end for

Return {Q0, Q1, . . . , QH−1} =0

Definition 3 Bellman Error is defined as f − T f .

Per the above, the Bellman Error of the optimal Q function is Q⋆ − T Q⋆ = 0.

Recall the Q-Value iteration algorithm (Alg. 1). Observe that this algorithm is attempting

to minimize the Bellman Error by iteratively applying the Bellman Operator. Once we have

near optimal Q-value estimates (Q̂ ≃ Q⋆), we can get a near optimal policy via a simple

action-level argmax: πQ⋆
= π⋆. However, these sorts of tabular algorithms assume we have

access to the transition dynamics (P (·|s, a)) everywhere. If we have to learn the dynamics

from data, we have to answer the question of where it is most important to do so to ensure

value learning leads to a strong policy.

16.2 Where should Bellman error be minimized?

16.2.1 Naive case, assuming we have data everywhere

If we have data for every state-action pair, we do not need to explore online.

Assumption 1 (Full Coverage) A distribution µ(s, a) is said to satisfy full coverage if

1

µ(s, a)
≤ C for all (s, a).

This condition implies that the density ratio dπ(s,a)
µ(s,a)

is bounded for any policy π, where dπ(s, a)

is the visitation distribution defined as the probability of encountering the state-action pair

(s, a) when following policy π starting from the initial state distribution.

Under full coverage, our dataset is sufficiently rich so that we do not need to explore online.

Instead, we can learn a model, plan using it, and extract a greedy policy. This approach
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is known as certainty-equivalent model-based RL. Given a fixed dataset, the method

computes the policy as follows:

P̂ (s′|s, a) = count(s, a, s′)

count(s, a)

π̂(s) = argmax
a

Q̂P̂ (s, a) , where QP̂ is obtained via Q-value iteration inside P̂ (MBRL)

A standard uniform convergence argument tells us that with enough samples from µ, the

learned dynamics/transitions are close to the true ones. Moreover, the more data you have,

the lower the error will be. More formally, a Hoeffding + union bound (out of scope) tells

us that

||P̂ (·|s, a)− P (·|s, a)||TV ≤ ϵ := |S|
√

C

h
∀s, a.

Recall that under the assumption that we have a model that is good everywhere, i.e.

∥P̂ (·|s, a)− P (·|s, a)∥TV ≤ ϵ ∀ (s, a),

the Simulation Lemma implies that for any state-action pair,∣∣Q(s, a)− Q̂(s, a)
∣∣ ≤ H2ϵ.

Proof: For any state s, let π⋆ be the optimal policy for the true MDP M and let π̂ be the

greedy policy with respect to Q̂. Then, via an add and subtract trick,

Q(s, π∗(s))−Q(s, π̂(s)) = Q(s, π∗(s))− Q̂(s, π∗(s))︸ ︷︷ ︸
≤H2ϵ

+ Q̂(s, π∗(s))−Q(s, π̂(s))︸ ︷︷ ︸
≤H2ϵ

≤ H2ϵ+H2ϵ

= 2H2ϵ.

Applying the simulation lemma to both terms yields the final bound.

Note: in translating between finite horizon and discounted infinite horizon setting, 1
1−γ
≃ H.

We will interchange throughout the lecture for convenience of analysis.

16.2.2 All-π concentrability

All-π concentrability: ∀π, maxs,a
dπ(s,a)
µ(s,a)

≤ C. In other words, instead of needing to cover

every state-action pair, we only need to cover state and actions where any policies could visit.
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However, there may be policies that visit every state-action pair, making this condition not

that much weaker than full coverage.

Let us now introduce function approximation – i.e., going beyond the tabular setting. We’ll

search over a class of candidate value functions F for some f ∈ F such that f ≃ Q⋆. This

function class is defined as F ⊆ S × A 7→ [0, Vmax]. The natural offline algorithm for this

setting is called Fitted Q-Iteration (FQI), and it minimizes the squared Bellman error over

your offline dataset (Algorithm 2).

Algorithm 2 Fitted Q-iteration (FQI)

for h: H, ..., 0 do

fh ← argminf∈F Ês,a[(f(s, a)− T fh+1(s, a))
2]

To prove guarantees for the above algorithm, we’ll need the Bellman Completeness As-

sumption: ∀f ∈ F , T f ∈ F – i.e. the Bellman backup of an arbitrary function in F is

contained in F . This is a very strong assumption, which is satisfied by limited settings such

as the tabular setting (the setting considered in this course). For instance, this doesn’t hold

for the deep neural net policies. The reason this is strong is that because adding a function

can break the assumption, unlike expert realizability in imitation learning where expanding

the policy class can only help. Given the strength of these assumptions, we will now consider

a weaker set of assumptions and a corresponding algorithm that works under them.

16.2.3 Single-Policy Coverage (SPC)

Definition 4 (Single-Policy Coverage) For some policy π, a distribution µ(s, a) satisfies

single-policy coverage if

max
s,a

dπ(s, a)

µ(s, a)
≤ Cπ <∞

where dπ(s, a) is the visitation distribution under policy π and Cπ is the coverage coefficient.

Moving from all-π concentratability to SPC is similar to moving from for all to there exists.

Intuitively, we should be able to compete against policies where we’ve seen what they’ll do

in our dataset.

There are lower bounds showing that even in the realizable setting with Bellman com-

pleteness, SPC is insufficient to guarantee strong performance in the offline setting—online

algorithms can surpass these lower bounds. In practice, pure offline RL methods often face

severe distribution shift, making it challenging to determine when to stop training or which

checkpoint to deploy. Furthermore, model selection in offline RL often relies on some form of
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online testing (e.g., testing the performance of different checkpoints online and then choosing

the best one), so directly incorporating online interactions may not be too much of a leap.

The hybrid RL framework addresses these issues by using limited online data to correct

for distribution mismatch, thereby enabling more reliable policy improvement—if we have

access to an online environment, then SPC can be made to work.

Hybrid RL - You are given offline data but also access to online environment access. Note

that Agnostic System Identification [1] which we covered in the model-based RL lecture (Lec-

ture 15) was the first example of this setting. Here we introduce a model-free counterpart.

Algorithm 3 Hybrid Q-iteration (HyQ) [2]

We have offline dataset Doff, initialize f 0

for t = 1, . . . , T do

πt
h(s)← argmaxa f

t−1
h (s, a); ∀h ∈ [1, ..., H]

Don ← Don ∪ (s, a, r, s′) ∼ πt (online data)

f t ← FQI(Doff ∪ Don)

end for=0

Note, that h above indexes the timesteps of the MDP and the inner FQI loop, while t indexes

the iterations of the outer loop. In each outer-loop step, we learn a sequence of H policies

in the finite horizon setting. Observe that we aggregate online data like in DAgger.

In Hybrid RL, the goal is to compete against the best π with Cπ ≤ ∞, meaning we aim

to compete against any policy covered by the offline dataset. This is the same fundamental

objective as offline RL, but the ability to interact with the environment in Hybrid RL allows

us to circumvent the lower bounds that restrict purely offline methods. This goal is also quite

reasonable—if a policy is represented in the dataset, we should be able to imitate or even

surpass it. While we are typically limited to competing with the best policy contained in the

offline dataset, there are variations of this setting that allow us to get closer to the optimal

policy π⋆, often by incorporating an exploration bonus to guide the online interactions.

16.2.3.1 Why Should HyQ Work?

Intuitively, running FQI on the hybrid data guarantees low Bellman Error on states from πe

and the policy induced by HyQ πf . We now argue this is sufficient to guarantee we learn a

strong policy. We begin with a lemma analogous to the Performance Difference Lemma.

Lemma 2 Given any comparator policy πe, for any f ∈ F and corresponding greedy policy
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πf , we have

Es0∼d0

[
V πe

0 (s0)− V πf

0 (s0)
]
≤

H∑
h=1

E(sh,ah)∼dπeh

[
T fh+1(sh, ah)− fh(sh, ah)

]
︸ ︷︷ ︸

offline error

+
H∑

h=1

E
(sh,ah)∼dπ

f
h

[
fh(sh, ah)− T fh+1(sh, ah)

]
︸ ︷︷ ︸

online error

.

Proof: We can consider the following decomposition:

Es0∼d0

[
V πe

0 (s0)− V
πf

0 (s0)
]
= Es0∼d0

[
V πe

0 (s0)−max
a

f0(s0, a) + max
a

f0(s0, a)− V
πf

0 (s0)
]
.

We bound the second difference using a variant of the Performance Difference Lemma:

Es∼d0

[
max

a
f0(s, a)− V πf

(s)
]

(1)
= Es∼d0

[
Ea∼πf

0 (s)

(
f0(s, a)− V πf

0 (s)
)]

(2)
= Es∼d0

[
Ea∼πf

0 (s)

(
f0(s, a)− T f1(s, a)

)]
+ Es∼d0

[
Ea∼πf

0 (s)

(
T f1(s, a)− V πf

0 (s)
)]

(3)
= E

(s,a)∼dπ
f

0

[
f0(s, a)− T f1(s, a)

]
+ Es∼d0

[
Ea∼πf

0 (s)

(
R(s, a) + γ Es′∼P (s,a)max

a′
f1(s

′, a′)

−R(s, a) + Es′∼P (s,a)V
πf

1 (s′)

)]
(4)
= E

(s,a)∼dπ
f

0

[
f0(s, a)− T f1(s, a)

]
+ E

s∼dπ
f

1

[
max

a
f1(s, a)− V πf

1 (s)
]
.

(1) follows from the definition of the greedy policy. (2) follows from an add and subtract

trick. (3) follows from expanding out the Bellman operator and usimg the definition of the

value function. Lastly, (4) follows from canceling terms, leaving us with what we started

with except one step further in the future. Then, we we can solve the recurrence relation for

the overall bound. We can similarly bound the first term, which is done in [2].
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16.2.3.2 Completing the Proof

To complete the performance bound, note that offline error term can be further bounded by

a change of measure. Specifically, noting that

E(s,a)∼dπe [h(s, a)] = E(s,a)∼µ

[
dπe(s, a)

µ(s, a)
h(s, a)

]
,

with h(s, a) = T fh+1(s, a)− fh(s, a) (i.e. the Bellman Error at (s, a)), we have

H∑
h=1

E(sh,ah)∼dπeh

[
T fh+1(sh, ah)− fh(sh, ah)

]
=

H∑
h=1

E(sh,ah)∼µ

[
dπe(sh, ah)

µ(sh, ah)

(
T fh+1(sh, ah)− fh(sh, ah)

)]
Next, we can apply the Cauchy-Shwartz inequality:

≤
H∑

h=1

√√√√E(sh,ah)∼µ

[(
dπe(sh, ah)

µ(sh, ah)

)2
]
· E(sh,ah)∼µ

[(
T fh+1(sh, ah)− fh(sh, ah)

)2]

≤
H∑

h=1

√
C · E(sh,ah)∼µ

[(
T fh+1(sh, ah)− fh(sh, ah)

)2]
,

where the final inequality uses the SPC assumption w.r.t. πe, i.e. that

dπe(s, a)

µ(s, a)
≤ C for all (s, a).

This gives us an overall bound of

Es0∼d0

[
V πe

0 (s0)− V πf

0 (s0)
]
≤

H∑
h=1

√
C · E(sh,ah)∼µ

[(
T fh+1(sh, ah)− fh(sh, ah)

)2]
(16.3)

+
H∑

h=1

E
(sh,ah)∼dπ

f
h
[fh(sh, ah)− T fh+1(sh, ah)] . (16.4)

Observe that minimizing squared Bellman Error on samples from µ makes the first term

small. Under certain assumptions we don’t discuss here, an analogous bound can be proved

for the second term in terms of squared Bellman Error – see [2] for the full proof. The key

take-away from the above proof is that hybrid RL allows us to compete against a policy with

just SPC, which purely offline algorithms provably cannot achieve. Furthermore, hybrid RL

is efficient, in the sense we can avoid explicit optimism / pessimism procedures.
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