
17-740 Spring 2025

Algorithmic Foundations of Interactive Learning

Lecture 17: Model Predictive Control & Test-Time Scaling

Lecturer : Gokul Swamy Scribe: Michael, Megan Li, Yuemin Mao, Jehan Yang

1.1 What is Model Predictive Control (MPC)?

Model Predictive Control (MPC) is a fundamental building block of most modern robotics

systems. Intuitively, rather than solving a planning problem at all states one could see in

an offline fashion, we simply solve a truncated horizon planning problem at the states we

do see during online rollouts in MPC. In this sense, MPC is a lazy algorithm, in the sense

it only does computation at the last moment before it is required.

A bit more formally, for each h ∈ [H]:

1. Plan a sequence of k actions starting from sh in T ⋆ (perfect model) or T̂ (imperfect

model): ãh+h+k.

2. Execute the first of these actions ah = ãh in T ⋆.

In other words, we solve

ãh:h+k = argmax
ah:h+k

ET

[
h+k∑
τ=h

r(sτ) + V (sh+k)|ah:h+k

]
, (1.1)

before executing the first of these actions in the real world and then re-planning. Re-planning

is only valuable when our estimated s′h+1 (what we expect would happen) differs from the

true sh+1, i.e. when the dynamics are stochastic. This is true for many robotics problems

but not for auto-regressive language generation. Thus, the variants of MPC that are used

for language models (e.g. best-of-N) usually don’t involve a re-planning procedure.

1.2 How much does lookahead improve performance?

A natural question at this point might be what the value of MPC / lookahead search is for

performance. As we will discuss in greater detail below, a k-step lookahead search can be

considered performing k iterations of the policy improvement procedure.

1-1

Consider some policy π with value function V π. Single-step policy improvement looks like

π+
1 (s) = argmax

a∈A
r(s) + Es′∼T (s,a)[V

π(s′)]]. (1.2)

Observe that this is just MPC with k = 1. Now, using the Performance Difference Lemma,

we can prove that this local improvement guarantees a better policy, globally speaking:

J(π+
1)− J(π) = Eζ∼π+

1

[
H∑
h

Qπ(sh, ah)− Ea′∼π(sh) [Q
π(sh, a

′)]

]
(1.3)

= Eζ∼π+
1

[
H∑
h

max
a

Qπ(sh, a)− Ea′∼π(sh) [Q
π(sh, a

′)]

]
(1.4)

≥ 0, (1.5)

where the last follows from the fact that each term inside the expectation is non-negative.

Let us now consider MPC with k-step lookahead. For simplicity, we will assume access to a

perfect model but a more general version of the following results can be proved via an appeal

to the simulation lemma we discussed previously. Define the k-step lookahead policy as

π+
k (sh) = argmax

ah:h+k

ET ⋆

[
h+k∑
τ=h

γτ−hr(sτ) + γkV π(sh+k) | sh, ah:h+k

]
. (1.6)

Define ϵ as the largest value difference between our current policy and the optimal policy

over the state space: ϵ = maxs∈S
V ∗(s)−V π(s)

H
. We define ϵ this way to make things horizon-

independent. We will now show that

J(π∗)− J(π+
k) ≤ O

(
ϵγkH(1− γH)

1− γk

)
, (1.7)

i.e. that lookahead search allows us to decrease the performance difference as we scale up k.

Proof: Similar to the simulation lemma, the proof proceeds via adding / subtracting a

“cross-term” and then canceling terms to end up with time-shifted terms. For notational

convenience, we will drop the s1 = s conditioning from all of the preceding equations.

V ⋆(s)− V k
+(s) = E

[
k∑
h

γhr(sh) + γkV ⋆(sk) | π⋆

]
︸ ︷︷ ︸

a

−E

[
k∑
h

γhr(sh) + γkV k
+(sk) | π+

k

]
︸ ︷︷ ︸

d

= a+ E

[
k∑
h

γhr(sh) + γkV ⋆(sk) | π+
k

]
︸ ︷︷ ︸

b

−E

[
k∑
h

γhr(sh) + γkV ⋆(sk) | π+
k

]
︸ ︷︷ ︸

c

+d.

1-2

Observe that the the discounted sum of rewards in b and d cancel out as the expectations

are taken over actions chosen by the same policy. After canceling and collecting like terms,

we are left with

= a− E

[
k∑
h

γhr(sh) + γkV ⋆(sk) | π+
k

]
+ γkE

[
V ∗(sh)− V +

k (sh) | π+
k

]
. (1.8)

Now, given we don’t a-priori know that V ⋆ is, we’re going to replace it with the value function

of the policy V π, which by assumption differs by at most ϵH at any state. We’ll do this in

both terms a and b, which gives us

≤ E

[
k∑
h

γhr(sh) + γkV π(sk) | π⋆

]
− E

[
k∑
h

γkr(sh) + γkV π(sh) | π+
k

]
+ γkE

[
V ⋆(sk)− V +

k (sh) | π+
k

]
+ 2ϵHγk. (1.9)

Next, we note that πk
+ is the policy that by definition maximizes the first term so we can

upper bound the expectation under π⋆ and cancel like terms:

≤ E

[
k∑
h

γhr(sh) + γkV π(sk) | πk
+

]
− E

[
k∑
h

γhr(sh) + γkV π(sk) | π+
k

]
+ γkE

[
V ∗(sk)− V +

k (sh) | π+
k

]
+ 2ϵHγk (1.10)

= γkE
[
V ∗(sk)− V +

k (sh) | π+
k

]
+ 2ϵHγk. (1.11)

Observe this is the same term we started off with, just shifted k steps into the future. We

can therefore compute the sum of the geometric series analytically to arrive at

≤ 2ϵHγk

H/k∑
i=1

(γk)i =
2ϵγkH(1− γH)

1− γk
. (1.12)

For the infinite horizon version, one would instead solve a recurrence relation.

1.3 What are the different variants of planning?

Given we now understand the performance benefits of MPC, let us consider several standard

algorithms which fall under the template we sketched above. Once again, our optimization

problem will be to solve

ãh:h+k = argmax
ah:h+k

ET

[
h+k∑
τ=h

r(sτ) + V (sh+k) | ah:h+k, sh

]
. (1.13)

1-3

Let us consider each part of the above in sequence. Consider for a moment a deterministic

problem. A “shooting” method expands the above objective via recursion:

r(s0) + r(T (s0, a0)) + r(T (T (s0, a0), a1) + . . . (1.14)

Observe that the repeated applications of T can lead to an ill-conditioned optimization

problem, similar to the vanishing / exploding gradient issue when training a recurrent neural

network. This can make it hard to use first-order methods (which rely on gradients) unless

there’s a more nicely behaved T̂ that approximates the ground-truth dynamics well (e.g. in

iLQR algorithms). Thus, we’ll mostly focus on zeroth-order algorithms for this lecture.

Solving the argmax over k actions can often be expensive, so it is common to have some

“base policy” one samples m k-step plans from before selecting from this set of m options.

The expectation over the next k steps is often done inside a (learned) world model.

The value function / terminal heuristic V is left underspecified in the above general formu-

lation. Ideally it would be V ⋆. In practice, we might hope to have access to some expert

value function V E, in which case the above is a lookahead version of DAgger / AggraVaTe.

Let us now discuss four popular algorithms that fit under the above template.

1.3.1 Best-of-N (BoN)

Under the assumption of having tree-structured, deterministic, perfectly known dynamics

(i.e. auto-regressive language generation), we can simplify the above formulation to a1:H =

argmaxa11:H ...aN1:H
r(sH). No re-planning is required because we always append the token we

expect to. A terminal cost is sufficient because sH allows us to uniquely decode all actions

/ tokens – it is merely their concatenation.

1.3.2 Cross Entropy Method (CEM)

Sample a11:k...a
N
1:k ∼ πt. Then, pick the top (both in terms of the k rewards and the terminal

cost) ≈ 10% of these and compute their mean µt+1. Finally, set πt+1(sh) = N (µt+1, σ
2).

Commonly used robotics planning algorithms like Model Predictive Path Integral Control

(MPPI) are essentially fancier versions of the above idea.

1-4

1.3.3 Sparse Sampling (Kearns, Mansour, Ng)

The algorithm proceeds as follows: start with some state s. Try each action ai some number

(c) of times and track where each action led. Next, from each of these resulting states,

repeat the process. Do this up to a maximum depth of H. Critically, we don’t do this for

all possible next states – only for the next states seen during the sampling process. Given

these empirical frequencies, we can just divide the number of times taking action a in state s

lead to state s′ by c to build an approximate dynamics model / MDP M̂ . One can then run

an arbitrary RL algorithm inside M̂ to compute π̂∗. It is possible to set c and H such that

we have strong policy performance guarantees independent of the size of the state space |S|.
This contrasts with the standard policy / value iteration algorithms, where the amount of

computation you have to do scales linearly with the size of the state space. We won’t delve

into it in this lecture but this is, more formally, what the ”laziness” of MPC means.

1.3.4 Monte Carlo Tree Search

Rather than sampling each action c times, we can use a more efficient exploration strategy.

Intuitively, if we consistently see that some state/action pair leads to a bad outcome, we

stop exploring from it. More formally, to trade off exploration and exploitation, we use

πUCT (s) = argmax
a

Q̂(s, a) + c

√
ln(n(s))

n(s, a)
. (1.15)

The second term comes from an upper confidence / Hoeffding bound. This can be seen as

the natural sequential generalization of a bandit algorithm.

1.4 How can we iterate this process?

Once we’ve ran a k-step look-ahead search, it often makes sense to not just throw away

that computation and instead use it to update the base policy so that we can have a better

starting point for the next round of policy improvement. This is often called expert / dual

policy iteration and is fundamental to how systems like AlphaGo work. Intuitively, one uses

MPC as a local expert and updates the policy via DAgger / distillation. A bit more formally:

For each round of the algorithm t ∈ [T]:

1. Do a k-step local search / MPC around πt to produce an improved ηt.

2. Use DAgger with ηt as the expert to produce πt+1 = argmaxπ∈Π Esh∼πt,ah∼ηt [log π(ah|sh)].

1-5

	What is Model Predictive Control (MPC)?
	How much does lookahead improve performance?
	What are the different variants of planning?
	Best-of-N (BoN)
	Cross Entropy Method (CEM)
	Sparse Sampling (Kearns, Mansour, Ng)
	Monte Carlo Tree Search

	How can we iterate this process?

