
17-740 Spring 2025

Algorithmic Foundations of Interactive Learning

Lecture 18: Imitation Learning as Game-Solving

Lecturer : Gokul Swamy Scribe: Jim Wang, Jason Wei, Sangyun Lee, Yang Zhou

18.1 Outline

In this lecture, we will focus on three key questions:

1. Why do we need interaction in imitation learning?

A: to be able to tell that we’ve made a mistake that compounds. (necessity)

2. What else do we need to tell which mistakes matter?

A: information about the set of rewards we could be judged on. (sufficiency)

3. How do we learn a policy that recovers from mistakes that matter if we don’t know

what the reward function is?

A: find the policy that is the least distinguishable from the expert’s under any reward

function in the moment set R.

18.2 Why do we need interaction in IL?

At a high level, it is to be able to tell that we’ve made a mistake that compounds, i.e. one

that compounds over the horizon.

18.2.1 The Pitfalls of Behavioral Cloning

Behavioral cloning is an offline / supervised learning approach to imitation learning. Given

some set of expert demonstrations, the BC optimization problem is to solve

argmin
π∈Π

Eξ∼πE

[
− log

(
H∏
h

π(ah|sh)

)]
= argmin

π∈Π

H∑
h

Esh,ah∼πE
[− log π(ah|sh)].

As we discussed in the DAgger lecture, an ϵ probability of making a mistake can often lead

to a performance that scales quadratically with the horizon, rather than the expected linear

scaling. This phenomenon is known as compounding errors.

18-1



18.2.2 What went wrong?

At train time, offline algorithms like BC look at

ℓBC(π) = Esh,ah∼πE
[− log π(ah|sh)].

However, at test time, the learner actually sees Esh∼π ̸= Esh∼πE
. Thus, ptest(x) ̸= ptrain(x),

which is called covariate shift in the machine learning literature.

Not being able to avoid compounding errors is a fundamental property of all offline algo-

rithms, as we now sketch via a lower bound example.

Figure 18.1: Suppose we have an expert policy πE that at h = 1, takes action a1 to go from

state s0 to s1, and then afterwards takes action a2 to stay in state s1 forever. Now suppose

we have two policies (π1, π2), both of which take a1 at h = 1 and with probability ε take

action a1 to end up in s2 while at state s1. However, these two policies differ in terms of

their behavior at s2, which is outside of the support of the expert. Specifically, π1 moves

immediately back to s1 via a1 when it gets to s2, but π2 stays in s2 indefinitely by taking

a2. In this MDP, only state s1 gives a reward of 1 per timestep (r(s, a) = 1[s = s1]).

Observe no offline IL algorithm can tell the difference between π1 and π2 because

they only differ on states outside of the support of the demonstrations. Mathematically,

we have J(πE, r) − J(π1, r) = εH, and J(πE, r) − J(π2, r) = εH2 (quadratic), despite

ℓBC(π1) = ℓBC(π2). In short, offline IL fundamentally can’t differentiate between policies

that recover and those that don’t, which means it can’t avoid compounding errors.

18.2.2.1 Where does the ε come from?

A natural question after going through the above example is where ε comes from. Roughly

speaking, there are three sources, each of which might matter for a particular problem:

18-2



1. Finite-sample error: limited number of expert demos.

A: Get more data.

2. Optimization error: imperfect search over policy class.

A: Use more compute (e.g. use a better optimizer).

3. Misspecification error: irreducible error from πe /∈ Π.

A: Use an interactive algorithm.

We’ll focus mostly on the third case for this lecture as it is the most fundamental / hard to

solve via scaling data or compute. As we’ll discuss further, interaction effectively generates

samples from the test distribution, allowing us to handle covariate shift.

18.3 What else do we need to tell which mistakes mat-

ter?

At the highest level, we need some sort of information about the set of rewards we could be

judged on. We’ll use R to denote this set for the rest of the lecture.

18.3.1 Not All Mistakes are Made Equal

We now sketch a simple example of why some knowledge of R is necessary to avoid com-

pounding errors.

Figure 18.2: Assume πE goes from s0 to s1 and stays there indefinitely. Now at s1, π1 has

probability ε to go to s2 and stay there indefinitely, and π1 has probability ε to go to s3 and

stay there indefinitely.

To be able to pick between π1 and π2, we need to be able to tell which mistakes cost

us performance, which is what R represents. For example, if we know s2 corresponds to a

18-3



“lane change” but s3 corresponds to a “car crash,” it becomes much easier to select between

π1 and π2.

18.3.2 Moments in Imitation Learning

For example, in autonomous driving, the set of moments (basis rewards) could include:

R = {distance to nearest car, distance to center of lane, distance from edge of road,

distance from nearest person, speed/speed limit, ...}

Note that knowing R is often much easier than knowing r. Concretely, rather than needing

to know the precise trade-offs between factors (e.g. how much better it is to arrive five

minutes earlier by being 1 inch closer to the nearest vehicle), we simply need to know the

set of criteria we could be judged under.

For the rest of this lecture, we’ll assume reward realizability, i.e. r ∈ R. However, given we

don’t know precisely which f ∈ R is R, we will attempt to be good under all f ∈ R!

18.4 How do we learn a policy that recovers from mis-

takes that matter if we don’t know what the re-

ward function is?

More formally, we can attempt to have a bounded performance difference from the expert

under all reward functions in R, which naturally leads to the form of a zero sum game:

max
π∈Π

min
f∈R

J(π, f)− J(πE, f), where J(π, f) = Eξ∼π

[
H∑
h

f(sh, ah)

]
(18.1)

Some notes on the above objective:

• If we dropped the first term and just tried to optimize maxπ∈Πminf∈R −J(πE, f), we

could just pick a reward function that is a constant everywhere. This is because the

expert (as well as any other policy) is optimal under this reward function. This is what

people mean when they talk about the ill-posedness of an inverse problem.

• This maximin objective is linear in f but not convex in π, but we’ll ignore the non-

convexity for now. Also note that the range of this payoff is [−H,H].

18-4



18.4.1 Game-Solving Searches the Pareto Frontier

Before we discuss the performance bounds of inverse RL, we now provide some intuition

about what the solution (i.e. Nash equilibrium) to the above game looks like.

Figure 18.3: For each candidate policy in Π, we can look at its performance on each possible

reward function r ∈ R = {r1, r2}. The Pareto frontier is then the set of policies that cannot

increase its performance on one reward function without decreasing the performance on some

other reward function (απ1 + (1 − α)π2). A solution to the game must live on this Pareto

frontier, effectively reducing the search space we look over, providing a statistical benefit

(i.e. fewer samples needed to find a good policy than behavioral cloning).

We will now do the simplest proof in this entire course:

Lemma 1 Assume π̂ is an ε-approximate equilibria for the IRL game and for simplicity

assume πE ∈ Π and r ∈ R. Then,

J(πE, r)− J(π, r) ≤ O(εH). (18.2)

Proof:

min
f∈R

J(πE, f)− J(π̂, f)

H
≤ ε ⇒ J(πE, r)− J(π̂, r) ≤ O(εH). (18.3)

Notice that the performance bound is linear in the horizon, which means we provably avoid

compounding errors. Note that we don’t need a queryable expert like DAgger.

To summarize, there are three key facts to remember about inverse RL:

18-5



1. Inverse RL lets avoid compounding errors without needing access to extra expert in-

teraction.

2. Inverse RL reduces the search space of policies to just those that are on the Pareto

frontier.

3. Inverse RL isn’t merely picking a reward that makes the expert look optimal—it is

fundamentally game-theoretic.

18.5 How do we solve the IRL Game?

We’ll use BR to mean “Best Response” and NR to mean “No Regret”. As we discussed

in the game-solving lecture, we can solve a game by running a no-regret player against a

best-response player or against another no-regret player. We have special names for these

two flavors of game solving in IRL: primal and dual. In greater detail:

Dual Primal

Policy Update BR: RL NR: GD (PG Step)

Reward Update NR: OGD NR: OGD

A popular dual algorithm is Maximum Entropy Inverse RL (MaxEnt IRL) and a popular

primal algorithm is Generative Adversarial Imitation Learning (GAIL). We will now discuss

the former in greater detail as it is usually not presented from a game-theoretic lens.

18.6 MaxEnt Inverse RL

We seek the policy with maximum entropy that matches the expert’s moments:

max
π

Eξ∼π

[
H∑
h

− log π(ah|sh)

]
(maximize causal entropy)

s.t.∀f ∈ R, Eξ∼π

[
H∑
h

f(sh, ah)

]
= Eξ∼πE

[
H∑
h

f(sh, ah)

]
(match expert moments)

It may seem a bit daunting to solve a trajectory-level maximum entropy problem (rather

than a single-step problem). However, as we will now derive, the solution follows a beautiful

18-6



form. First, forming the Lagrangian, we have

max
λ∈R|R|

min
π

Eξ∼π

[
H∑
h

− log π(ah|sh)

]
+
∑
f∈R

λf (J(π, f)− J(πE, f)). (18.4)

Observe that this is just an entropy-regularized variant of our above inverse RL game. An-

other way to derive the game is via this constraint satisfaction perspective. 1

Let us now solve this game via a dual strategy (i.e. with best responses over policies). For

some fixed λt, we can write the best-response over π as

min
π

Eξ∼π

[
H∑
h

log π(ah|sh)

]
+ J

(
π,
∑
f∈R

λf
t f

)
. (18.5)

This is because (1) we can drop the J(πE, f) as it is constant with respect to π, (2) J is a

linear function with respect to the second argument. Next, observing that both J and causal

entropy are expectations over trajectories sampled from π, we have

πt = argmin
π∈Π

Eξ∼π

[
H∑
h

(
− log π(ah|sh) +

∑
f∈R

λf
t f(sh, ah)

)]
. (18.6)

Observe that what remains is just a standard RL problem with a somewhat special reward:

rt(sh, ah) ≜ log π(ah|sh) +
∑
f∈R

λf
t f(sh, ah). (18.7)

We can therefore apply our standard RL tools like value iteration to solve this problem. Let

us proceed backwards in time, starting with h = H. Because there is nothing left to do,

V ⋆
t (sH) = 0. (18.8)

For the inductive step (i.e. h ∈ [0, H − 1]), value iteration tells us to solve

π⋆
t (·|sh) = min

p∈∆(A)
Ep

[
log p(a) +

∑
f∈R

λf
t f(sh, a) + ET (sh,a)[V

⋆
t (sh+1)]

]
(18.9)

Observe that this is a single-step maximum entropy problem – i.e. the kind we previously

covered how to solve! Recall that for MaxEnt problems of the form

min
p∈∆(X )

−H(p) + Ep[m(x)] (18.10)

1In the misspecified setting, there might be no policy that satisfies the constraints. Thus, it is common

to regularize the Lagrange multipliers with a quadratic penalty
∑

f∈R λ2
f , sometimes called an augmented

Lagrangian or AuLa for short.

18-7



have solutions of the form

p⋆(x) =
exp(m(x))∑

x′∈X exp(m(x′))
. (18.11)

Here, we have

m(a) =
∑
f∈R

λf
t f(sh, a) + ET (sh,a)[V

⋆
t (sh+1)]. (18.12)

Matching terms, we now know the solution to the above in closed form:

π⋆
t (ah|sh) =

exp
(∑

f∈R λf
t f(sh, ah) + ET (sh,ah)[V

⋆
t (sh+1)]

)
∑

a∈A exp
(∑

f∈R λf
t f(sh, a) + ET (sh,a)[V

⋆
t (sh+1)]

) . (18.13)

The fact that π⋆
t takes the form of a softmax is what leads to the above procedure being

referred to as soft value iteration. More generally, soft RL refers to entropy-regularized RL

problems. Recall that this softmax form is also what we derived when discussing Hedge

/ Multiplicative Weights and the Natural Policy Gradient. Thus, even though we took a

completely different route, we ended up with a strikingly similar solution!

We can now back up another timestep to get the next value function:

V ⋆
t (sh) = Eah∼π⋆

t (sh)
[log π⋆

t (ah|sh) + λf
t f(sh, ah) + ET (sh,ah)[V

⋆
t (sh+1)]. (18.14)

To close, recall that Bellman’s principle of optimality says that an optimal policy acts op-

timally at the current step and then acts optimally in the future. Intuitively, the above

derivation is telling us that the maximum entropy policy is maximally random at the cur-

rent step and then maximally random in the future.

18-8


	Outline
	Why do we need interaction in IL?
	The Pitfalls of Behavioral Cloning
	What went wrong?
	Where does the  come from?


	What else do we need to tell which mistakes matter?
	Not All Mistakes are Made Equal
	Moments in Imitation Learning

	How do we learn a policy that recovers from mistakes that matter if we don't know what the reward function is?
	Game-Solving Searches the Pareto Frontier

	How do we solve the IRL Game?
	MaxEnt Inverse RL

