
17-740 Spring 2025

Algorithmic Foundations of Interactive Learning

Lecture 2: Intro to Online Learning / Weighted Majority

Lecturer : Drew Bagnell Scribe: Gokul Swamy

2.1 The Problem of Induction

Machine learning (and perhaps all of science) can be viewed as attempting to solve the

problem of induction: making predictions about the future conditioned on the past.

Prior Inference Prediction

Data

Figure 2.1: We can view induction as the problem of turning what we know into a prediction

about something we don’t know. What assumptions are required for this to be possible?

Throughout the centuries, there have been a variety of views of the problem of induction:

• Laplace: If the sun rises for 1000 straight days, we should conclude that it has a high

chance of rising on the 1001st day.

• Hume (responding to the above): If a chicken has been fed for 1000 days, should

it conclude it won’t become dinner tomorrow?

In this course, we will take the no-regret view (which grew out of the late 20th century):

we will make no assumptions about how well the past predicts the future and attempt to

do as well anyone could hope to. Note the contrast between this and the statistical view

in standard machine learning, where we assume we will be tested on the same distribution

our training data was drawn from. As we will explore later in the course, one of the key

challenges of interactive learning is being able to predict accurately even under distribution

shift, and the no-regret view will give us a rigorous theoretical foundation for doing so.

2.2 Prediction with Expert Advice

For this lecture, we will focus primarily on the setting of prediction with expert advice.

Specifically, consider predicting a sequence of binary labels for T rounds, i.e. pt ∈ {0, 1}.

2-1

We will assume access to a set of experts E with |E| = N to help us with this task, e.g.:

• e0: always predicts 0

• e1: always predicts 1

• e2: predict what happened at the last round

• e3 predicts 0, 1, 0, 1, . . .

We will assume there is some ground truth sequence of labels y = (y1, . . . , yT) that is not

necessarily chosen in advance (i.e. it can be chosen adversarially in response to what our

algorithm predicts). We will judge algorithms based on the sum of per-round losses, where

ℓt(pt, yt) = 1[pt ̸= yt]. (2.1)

2.2.1 Regret

Without any assumptions, this problem is quite hard. We will instead attempt to compete

with the best fixed expert in hindsight. Specifically, we define regret as follows:

Definition 1 ((Static) Regret)

Regret(T) =
T∑
t

ℓt(pt)− ℓt(e
⋆
t) = min

e∈E

T∑
t

ℓt(pt)− ℓt(et). (2.2)

We say an algorithm achieves no-regret if it drives the time-averaged regret to zero, i.e. if

lim
T→∞

Regret(T)

T
→ 0. (2.3)

This may still seem like a lot to ask for (we haven’t made any assumptions on how the yt’s

are picked!). However, as we will spend the next few lectures exploring, there are a plethora

of algorithms that satisfy the no-regret property, some of which you are probably already

familiar with (e.g. gradient descent).

2.2.2 Follow-The-Leader (FTL)

We will first present what might be the most approach to online learning and then argue

why it doesn’t quite achieve no-regret. Let us define follow-the leader as the algorithm that

picks the best expert in hindsight, i.e.

2-2

Definition 2 (Follow-The-Leader (FTL)) Follow-The-Leader selects

pt = argmin
e∈E

t−1∑
τ

ℓt(e). (2.4)

For a moment, let us set E = {e0, e1} and tie-break in favor of e0. Let us run this algorithm

against an unforgiving world:

e0 Correct e1 Correct pt yt
0 0 0 1

0 1 1 0

1 1 0 1

Figure 2.2: If an adversary were to choose yt in a way to cause us maximal pain, they could

cause us to suffer linear regret (i.e. be wrong at every timestep even though no individual

expert is).

As we will discuss in future lectures, the core issue with FTL is that it is unstable – it switches

its predictions too easily, which makes it possible for an adversary to take advantage of it.

2.2.3 Halving Algorithm

For simplicity, we’re now going to assume there is a perfect expert, i.e. ∃e⋆ ∈ E s.t.∑T
t ℓt(e

⋆
t) = 0. Let’s now try a smarter approach:

Definition 3 (Halving Algorithm) The Halving Algorithm maintains a set of experts Et
at each round. E0 = E. If an expert ever makes a mistake, it is removed from the set. At

each round, pt is set to the majority vote across Et.

Observe that the total number of mistakes (i.e. total regret) the above algorithm can suffer

is log2(N). This is because if we ever make a mistake, we eliminate half the experts in the

last round’s Et and we can only do this process log2(N) times. This is sometimes referred to

as a mistake bound. Observe that this strategy is effectively weighting an expert by zero if

they ever make a mistake.

2-3

2.2.4 Deterministic Weighted Majority

If we want to handle the case where no expert may be perfect, we need to adopt a less

aggressive weighting scheme:

Definition 4 (Deterministic Weighted Majority (DWM)) DWM maintains a weight

wi for each e ∈ E. It predicts

pt = 1

 ∑
i:ei(t)=1

wt
i ≥

∑
i:ei(t)=0

wt
i

 (2.5)

(i.e. takes a weighted majority vote). Whenever an expert is wrong, it sets wt+1
i = 0.5wt

i.

We remark that this recovers the halving algorithm if we change the 0.5 to 0 and a standard

majority vote if we instead change to 1.

We now prove a regret bound for this algorithm:

Lemma 1 (DWM Regret Bound) Let m denote the number of mistakes DWM makes

and m⋆ denote the number of mistakes the best expert makes. Then, we have

m ≤ log2

(
4

3

)
(m⋆ + log2(N)). (2.6)

Proof: Observe that for DWM to make a mistake, half of the experts (in terms of weight)

need to be wrong and after such a mistake, this half looses half of their weight. This means

that every time the algorithm makes a mistake, the full set of experts loose at least 1
4
of their

total weight W . This directly implies that

N

(
3

4

)m

≥ W ≥
(
1

2

)m⋆

. (2.7)

Re-arranging terms gives the regret bound.

We remark that the above regret bound is tight via a variant of the switching construction

from 2.2.2.

Unfortunately, log2
(
4
3

)
≈ 2.41 > 1, so the above algorithm doesn’t quite achieve no-regret.

2-4

2.2.5 Randomized Weighted Majority

To actually achieve no-regret, we will now switch to predicting a distribution over experts,

and outputting what an expert sampled from that distribution said. While it might not be

immediately obvious why this is a good idea, in later lectures where we discuss game solving,

the reasoning behind this shift will become more transparent.

Definition 5 (Randomized Weighted Majority (RWM)) RWM initializes all weights

to 1, i.e. w0
i = 1. Define distribution pt(i) = wt(i)/

∑N
j wt(j). RWM samples from this

distribution and predicts what the sampled expert predicts. If an expert is wrong, it sets

wt+1
i ← β · wt

i.

We won’t prove this in this lecture, but we can bound the expected regret as

E[m] ≤ m⋆ ln(1/β) + lnN

β
. (2.8)

For an appropriate choice of β, this algorithm will achieve no-regret. Observe that because

we’re now shelling out to an expert, we no longer need to restrict ourselves to the binary

prediction setting.

2.2.6 Generalized Weighted Majority

For our final algorithm of this series, we will study Generalized Weighted Majority, for which

we will assume ℓt ∈ [0, 1]:

Definition 6 (Generalized Weighted Majority (GWM)) GWM is identical to RWM

but it sets

wt+1
i ← wy

i · exp(−εℓt(ei)), (2.9)

where ϵ can be thought of as a kind of learning rate.

Again, without proof, we will state that

E[Regret(T)] ≤ ε

T∑
t

ℓt(e
⋆
t) +

ln(N)

ε
≤ Tε+

ln(N)

ε
, (2.10)

where the second inequality comes from the scale of the loss. If we take the gradient of the

above w.r.t. ε and set it equal to zero, we can find that the optimal learning rate is O
(

1√
T

)
.

Plugging in this ε⋆ gives us a final regret bound of

E[Regret(T)] ≤ O(
√
T) +O(

√
T) ln(N). (2.11)

2-5

Because all terms are sub-linear in T , we have proved the above algorithm achieves no-

regret. Huzzah! We remark that without further assumptions, the
√
T and lnN scaling are

unavoidable up to constants.

2.2.7 Cover’s Universal Portfolio

We now present an example to perhaps temper the excitement the above example may have

evoked in the mind of an avaricious reader. What if, for a moment, we consider each expert

a stock in the stock market, and our problem to invest optimally (i.e. compete with the

best stock in hindsight). Why does the no-regret property not imply one of the preceding

algorithms could do this trivially? Observe that all the no-regret property says is that

1

T

T∑
t

ℓt(pt)− ℓt(e
⋆)→ 0, (2.12)

i.e. for the losses ℓt we actually observed, the regret goes to zero. It does not imply that for

any counter-factual set of losses we could have observed we would be able to drive regret to

zero. The reason this causes issues in stock trading is that if one puts enough money into

a particular stock, they change the value of that stock (i.e. the sequence of pt we choose

influences the set of ℓt we observe). Thus, while the no-regret property implies we do well

conditioned on our choices, it does not guarantee we do as well as any investor could have

done in the market (as they may induce a different set of ℓt with their choices of pt).

2.3 Convexity

We now define two concepts we will use repeatedly throughout the course.

Definition 7 (Convex Set) A set X is convex if, ∀a, b ∈ X and ∀α ∈ [0, 1],

αa+ (1− αb) ∈ X . (2.13)

In words, this definition is saying that there is a straight line to every other point in the set

that is contained in the set.

Definition 8 (Convex Function) A function f is convex if, ∀x, y ∈ dom(f) and ∀α ∈
[0, 1],

f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y). (2.14)

Equivalently, a function is convex if its epigraph (the set of points above the function) is a

convex set.

2-6

	The Problem of Induction
	Prediction with Expert Advice
	Regret
	Follow-The-Leader (FTL)
	Halving Algorithm
	Deterministic Weighted Majority
	Randomized Weighted Majority
	Generalized Weighted Majority
	Cover's Universal Portfolio

	Convexity

