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21.1 Outline

The lecture addresses three main points that characterizes Reinforcement Learning from

Human Feedback (RLHF) for language models (LM):

1. What is the fine-tuning problem?

A: Regularized maximum likelihood estimation (MLE).

2. End-to-end, what is the process of RLHF doing?

A: A two-stage process consisting of MLE over reward models followed by MaxEnt

(Entropy-Regularized RL) over policies.

3. What are direct alignment algorithms?

A: Algorithms that directly maximize likelihood over the policy space Π without explicitly

passing through the reward model space R.

21.2 Motivation: The Era of Fine-Tuning

Pretrained language models such as GPT-3/4 [1, 2] learn a wide range of capabilities and

statistical patterns from vast amounts of textual data mainly sourced from unstructured web

data. However, their behavior might not align perfectly with human intentions or desired

interaction styles (e.g., instruction following, helpfulness, harmlessness).

Fine-tuning, particularly using methods like RLHF [3], aims to ”steer” these base models

towards desired behaviors. This alignment process engineers the model’s outputs to better

match human preferences, leading to models like InstructGPT [3] or ChatGPT, which ex-

hibit significantly improved instruction-following and conversational abilities compared to

their base counterparts. The core problem we are trying to solve during this fine-tuning or

alignment phase can be framed as regularized maximum likelihood estimation. However, it

is really hard to write an effective reward function by hand.
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21.3 The Standard Three Steps of RLHF

The standard RLHF pipeline typically involves three stages:

1. Supervised Fine-Tuning (SFT): (Also referred to as Imitation Learning - IL). A

pre-trained language model is fine-tuned on a dataset of high-quality human demon-

strations or instructions. For various prompts, human labelers provide the desired

outputs. The model learns to mimic these expert responses (behavior cloning). Let

the policy after this stage be πSFT or πref.

2. Reward Model (RM) Training: Reward models are specific models that can asses

the quality of a model response or in this case how preferable a response is to a human.

While in theory, RMs can be any function that provides a score given a response, in

the case of RLHF, it is often initialized from the SFT model. This involves collecting

comparison data: for a given prompt, multiple outputs are generated (e.g., from the

SFT model), and human labelers rank these outputs or choose the best one (pair-

wise comparison). The reward model learns a scalar function rϕ(prompt, completion)

that assigns higher scores to preferred responses. This is essentially a classification or

regression problem aiming to model the human preference distribution.

3. Reinforcement Learning (RL) Optimization: The language model (initialized

from the SFT model) is further optimized using RL. The goal is to maximize the

expected reward predicted by the trained reward model rϕ. To prevent the policy from

deviating too much from the SFT model (which has good generative capabilities and

prevents reward hacking), a KL-divergence penalty term is added to the objective.

Common RL algorithms used include PPO (Proximal Policy Optimization)[4], but

other policy gradient methods (like REINFORCE[5], REBEL[6], GRPO[7]) can also

work effectively with proper tuning.

This process iteratively refines the language model to align better with human preferences

while retaining its core language capabilities.

21.4 Language Modeling as a Markov Decision Process

(MDP)

A language model predicts the probability of the next token wt given the preceding tokens

wt ∼ P (wt|wt−1wt−2 · · ·w1). We can think of language modeling as a special MDP.
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• Prompts as Initial States (s0) We can regard prompts s0 as an initial state sampled

from a distribution s0 ∼ p0. LMs are typically provided instructions as input which

initializes the language model to provide a sequence of continuation text.

• Next Token Predictions as Actions (at): Provided an initial state s0, a model

predicts the next token from a vocabulary / action space. We denote this as at ∈ A.

• Generated Tokens as State (st): At each successive step t, the sequence of tokens

thus far can be regarded as the current state on which a model is conditioned on to

predict the next token. This way, we can write any arbitrary state st as a concatenation

of the initial state and the sequence of actions (or tokens) predicted up to time step t,

st = [s0, a1, a2, . . . , at]. Thus, our state space is S = AH , where H is the horizon.

• The LM as the Policy (π): If we define generated tokens st−1 as state and the

next token at as action, the language model itself becomes the policy π(at|st−1) that

provides the probability distribution over the next token given the preceding sequence.

• Transitions (T ): The transitions are deterministic and known. Given state s and

action (token) a, the next state s′ is simply the concatenation s′ = [s, a].

T (s′ | s, a) =

{
1 if s′ = [s, a]

0 otherwise

This structure forms a tree rooted at the prompt s0.

• Horizon (H): A maximum generation length H is typically set which limits the

generated sequence to sH = [s0, a1, a2, . . . , aH ]. Generation can end earlier if an end-

of-sequence token is produced.

• Reward (r): In the RLHF context, the reward is typically assigned only at the end

of the generation (at horizon H or when an end-of-sequence token is generated). This

is because it is often hard to break down the quality of some text into a sum of per-

word scores. The reward function r(sH) or r(ξ) (where ξ = (a1, . . . , aH) is the full

completion) is given by the output of the trained reward model from Step 2.

Remark 1 (Special Characteristics of the Language MDP)

1. Dynamics are deterministic, known, and tree-structured.

2. Resets are easy: starting a new generation from any prefix (state) is trivial.

3. The reward function r(sH) is non-Markovian with respect to the token-level states st
(it depends on the entire sequence) and doesn’t naturally decompose per token.

21-3



Remark 2 Since the reward is only given at the end based on the complete trajectory (com-

pletion), this MDP can be analyzed as a contextual bandit problem, where the context is the

prompt s0 and the “action” is the entire generated sequence ξ.

Remark 3 (Fixed Horizon H) While language generations vary in length, using a fixed

horizon H is often practical. Models can generate a special “⟨eos⟩” token. Tokens generated

after “⟨eos⟩” can be considered padding and ignored, effectively handling variable lengths

within the fixed horizon framework.

21.5 Preference Fine-Tuning: The Data and Goal

Setup: The dataset D consists of tuples (s0, ξ
+, ξ−), where:

• s0 ∼ p0 is a prompt.

• ξ+ and ξ− are two completions generated for the prompt s0, often sampled from the

SFT policy πref (i.e., ξ+, ξ− ∼ πref(·|s0)).

• A human label indicates that ξ+ is preferred over ξ− (denoted ξ+ ≻ ξ−).

Optimization Problem: The ultimate goal of RLHF is to find a policy π that generates

completions aligning with human preferences, while staying “close” to the initial SFT policy

πref. This “closeness” is enforced by a (reverse) KL penalty. The fine-tuning problem can be

seen as finding a policy π⋆ that minimizes some loss on the preference data D, regularized

by its distance to πref:

π⋆ = argmin
π∈Π

DKL(D||π) + βDKL(π||πref) (21.1)

where LD(π) measures how well π explains the preferences in D (i.e., data likelihood), and

β controls the strength of prior regularization. Intuitively, the reason we need regularization

to a prior is that D often doesn’t cover all possible generations, which means we don’t want

our policy to start generating text that we haven’t received human feedback on.

Pro vs SFT: Collecting preference data is often easier and cheaper than asking experts to

write high-quality demonstrations.

Con vs. SFT: Each data point provides only relative information (e.g., 1 bit for pairwise

comparison), which is much less informative than a full demonstration.
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21.6 Two-Stage RLHF: Information Geometry View

Let’s analyze the standard two-stage process (RM training + RL optimization) using con-

cepts from the field of information geometry.

21.6.1 Stage 1: Reward Modeling as MLE (FKL Projection)

We typically model human preferences using the Bradley-Terry (BT) model. It assumes

an underlying latent reward function r shared across the entire population such that the

probability of preferring ξ1 over ξ2 given prompt s0 is:

Pr(ξ1 ≻ ξ2|s0) = σ(r(ξ1) − r(ξ2)) (21.2)

where σ(x) = 1/(1 + e−x) is the sigmoid function.

Remark 4 This model assumes consistent preferences across the population, which fre-

quently does not hold in practice. In such situations, intransitivity might occur from prefer-

ence aggregation, which means that no reward function can explain the observed preferences.

We will discuss how to deal with this issue in a later lecture.

Also, let PD(ξ1 ≻ ξ2|s0) denote the empirical probability (frequency) in the dataset D that

ξ1 was preferred over ξ2 for prompt s0 by our pool of raters..

A reward model is nothing but a classifier. Training the reward model rϕ (parameterized

by ϕ, often within a space R) is performed by maximizing the likelihood of the observed

human preferences in D. This is equivalent to minimizing the forward KL divergence from

the empirical preference distribution PD to the model’s predicted preference distribution Prϕ :

r̂mle = r∗ϕ = argmin
rϕ∈R

Es0∼D
[
DKL(PD(· ≻ ·|s0)||Prϕ(· ≻ ·|s0))

]
(21.3)

= argmax
rϕ∈R

E(s0,ξ+,ξ−)∼D
[
logPrϕ(ξ+ ≻ ξ−|s0)

]
(21.4)

= argmax
rϕ∈R

E(s0,ξ+,ξ−)∼D
[
log σ(rϕ(ξ+) − rϕ(ξ−))

]
(21.5)

Observe that this is precisely the objective function for training a classifier using logistic

regression on the preference pairs. From an information geometry perspective, this MLE step

is performing a Forward KL projection (FKL) of the empirical preference distribution

PD onto the space of realizable preference distributions induced by reward models in R.
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21.6.2 Stage 2: RL Optimization as MaxEnt RL (RKL Projection)

In the second stage, we use the learned reward model r̂mle to optimize the policy π (param-

eterized by θ, within a space Π). The objective is to maximize the expected reward under

the policy π, while regularizing with the reverse KL divergence to the reference policy πref

(usually the SFT policy) to prevent reward hacking caused by limited D coverage:

π̂rlhf = argmax
π∈Π

Eξ∼π(·|s0) [r̂mle(ξ)] − βDKL(π(·|s0)||πref(·|s0)) (21.6)

Here, β is a hyperparameter controlling the regularization strength. The KL divergence term

is calculated over entire sequences ξ:

DKL(π||πref) = Eξ∼π

[
log

π(ξ|s0)
πref(ξ|s0)

]
= Eξ∼π

[
H∑

h=1

log
π(ah|sh−1)

πref(ah|sh−1)

]
(21.7)

This is a standard objective in entropy-regularized RL or “Soft RL”. Recall from a past

lecture that the optimal policy π⋆ for this objective has the form:

P⋆
r̂mle

(ξ|s0) =
1

Z(s0)
Pref(ξ|s0) exp

(
1

β
r̂mle(ξ)

)
=

H∏
h

π⋆
r̂mle

(ah|sh), (21.8)

where Z(s0) is the partition function ensuring the distribution sums to 1 over all possible

sequences ξ starting from s0, and the RHS equality uses the fact that the dynamics are

deterministic. We don’t discuss the proof in lecture but it can be shown that solving this

soft RL problem over some policy class Π is equivalent to projecting P⋆
r̂mle

onto the space of

trajectory distributions Pπ induced by π ∈ Π under the reverse KL metric:

π̂rlhf = argmin
π∈Π

DKL(Pπ||P⋆
r̂mle

) (21.9)

End-to-End Summary: The standard two-stage RLHF process first performs an FKL

projection from the data D to the reward space R (MLE for r̂mle), and then an RKL pro-

jection from the reward-induced target distribution P⋆
r̂mle

to the policy space Π (MaxEnt RL

for π̂rlhf). We visualize this process in Figure 21.1.

21.7 Direct Alignment Algorithms (e.g., DPO)

Direct Alignment Algorithms aim to bypass the explicit reward modeling step (Stage 1) and

directly optimize the policy π using the preference data D via offline maximum likelihood

estimation. Direct Preference Optimization (DPO) is a prominent example.
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Figure 21.1: Geometric Interpretation of RLHF and DPO (Adapted from [8]).

The core idea of DPO is to re-express the reward function in terms of the optimal policy

and the reference policy. Recall the form of the soft optimal policy π⋆ for a given reward r:

P⋆
r(ξ|s0) =

1

Z(s0)
Pref(ξ|s0) exp

(
1

β
r(ξ)

)
(21.10)

We can take a log on both sides and and rearrange to solve for r(ξ):

logP⋆
r(ξ|s0) = logPref(ξ|s0) +

1

β
r(ξ) − logZ(s0) (21.11)

r(ξ) = β

(
log

P⋆
r(ξ|s0)

Pref(ξ|s0)

)
+ β logZ(s0) (21.12)

Since P⋆
r(ξ|s0) =

∏
h π

⋆(ah|sh−1) and Pref(ξ|s0) =
∏

h πref(ah|sh−1) due to the deterministic

dynamics, we can expand to write terms using token-level probabilities:

r(ξ) = β
H∑

h=1

(log π⋆(ah|sh−1) − log πref(ah|sh−1)) + β logZ(s0) ≜ rπ(ξ). (21.13)

Thus, we can express the reward function that makes a policy soft optimal in terms of said

policy by inverting the MaxEnt RL equations. So, while soft value iteration lets us go from

r to π⋆, DPO tells us that logistic regression lets us go in the reverse direction.
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Remark 5 (Your Language Model is Secretly a Reward Model) One can show that

the optimal policy for the entropy-regularized RL objective using this implicit reward rπ is

precisely the policy π itself.

P⋆
rπ(ξ) ∝ exp(rπ(ξ)) (21.14)

∝ exp

(
H∑
h

log π(ah|sh) + logZ(s0)

)
(21.15)

∝ exp

(
H∑
h

log π(ah|sh)

)
(21.16)

∝
H∏
h

π(ah|sh). (21.17)

Thus, if we optimize over rπ, we get the corresponding soft-optimal policy π “for-free”.

The DPO Objective: DPO substitutes this implicit reward function rπ directly into the

Bradley-Terry likelihood objective used for reward modeling (i.e. Stage 1), cancelling out

the partition function as both trajectories share the same prompt:

π̂dpo = argmax
π∈Π

E(s0,ξ+,ξ−)∼D
[
log σ(rπ(ξ+) − rπ(ξ−))

]
= argmax

π∈Π
E(s0,ξ+,ξ−)∼D

[
log σ

(
β log

π(ξ+|s0)
πref(ξ+|s0)

− β log
π(ξ−|s0)
πref(ξ−|s0)

)]
This results in a single-stage optimization problem where we directly maximize the likelihood

of the preference data under the policy π without any RL / on-policy sampling.

Information Geometry View of DPO: DPO performs a forward KL projection (FKL)

directly from the empirical preference distribution PD onto the policy space Π. It bypasses

the intermediate reward model space R.

• Standard RLHF: D FKL (MLE)−−−−−−−→ R RKL (MaxEnt RL)−−−−−−−−−−−→ Π

• DPO: D FKL (MLE)−−−−−−−→ Π

Key Point: While both methods aim to align the policy with preferences, the resulting

policies π̂rlhf and π̂dpo are not necessarily identical, as we discuss in subsequent lectures.

21.8 *
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