
17-740 Spring 2025

Algorithmic Foundations of Interactive Learning

Lecture 4: Maximum Entropy & FTRL

Lecturer : Drew Bagnell & Steven Wu Scribe: Anupam Nayak & Steven Man

4.1 Recap: Entropy maximization under expectation

constraint

We revisit the problem of maximizing entropy under a constraint, as discussed in the last

class. The goal is to determine the probability distribution pi for i ∈ {1, 2, . . . , 6} representing
a biased die. The distribution must satisfy the expectation constraint that the expected value

of the top face is 4.5 while maximizing the entropy. The mathematical formulation involves

finding pi that maximizes the entropy:

Maximize: H(p) = −
6∑

i=1

pi log pi,

Subject to:
6∑

i=1

pi = 1 (normalization constraint),

E[f ] = c (expectation constraint).

Where f(i) = i is the value on the top face. In order to solve the problem we use the method

of Lagrangian multipliers.

L(p, γ, λ) = min
γ,λ

max
p

H(p)− γ

(
6∑

i=1

pi − 1

)
− λ (Ep[f ]− c)

Setting ∂L
∂pi

= −γ − λf(i)− log(pi)− 1 = 0 we obtain

pi =
e−λf(i)

eγ
′ =

e−λf(i)

Z(λ)

where γ
′
= γ + 1 = log

(∑6
i=1 e

−λf(i)
)
= logZ(λ). Now we are left with a variable λ. Note

that setting λ = 0 we get the uniform distribution and setting λ = −∞/∞ we get a distri-

bution that has all the probability mass concentrated at i = 6/1 respectively. The function

Z(λ) is usually called the partition function and λ is called the temperature. Substituting

4-1



pi back into the Lagrangian we obtain the expression

− Ep[−λf(i)− logZ(λ)]− λ (Ep[f ]− c) (4.1)

= Ep[logZ(λ) + λc] (4.2)

Taking the gradient of the above expression wrt λ we obtain

−
∑

fe−λf

Z(λ)
+ c = −Ep[f ] + c (4.3)

This is also called the Max-Ent gradient. The given distribution pi =
e−λf(i)

Z(λ)
is a member of

the exponential family because it can be written in the general form p(x|θ) = h(x) exp(η(θ) ·
T (x)− A(θ)), where h(x) = 1, η = −λ, T (i) = f(i), and A(θ) = logZ(λ)[1].

To obtain the value of λ set the Max-Ent gradient to 0 and solve for Ep[f ] = c. One can

also note the fact that the expected value Ep[f ] is a monotonically decreasing function of λ

which allows the use of root finding techniques for efficiently computing λ.

The principle is also widely used in statistical physics. For example, the probability of

finding a molecule at height h in the Earth’s atmosphere is given by p(h) = e−λmgh

Z
, where

λ = 1/kT , m is the mass of the molecule, g is the gravitational acceleration, and Z is the

partition function. The expectation value of the potential energy, E[mgh], is constrained to

a constant C, which reflects equilibrium conditions.

For a 1D ideal gas, the mean velocity is E[v] = 0, assuming a symmetric velocity distribution.

The mean kinetic energy is E[v2] = 2C
m
, where C relates to the temperature or average energy.

The velocity distribution follows the Maxwell-Boltzmann form: p(v) = e−λ 1
2mv2

Z
, derived using

the maximum entropy principle under the constraint of fixed mean energy.

4.2 Online Learning with Expert Advice

4.2.1 Setup

• N experts: i = 1, . . . , N

• For round t = 1, . . . , T :

1. Algorithm chooses pt = (pt1, . . . , p
t
N)

2. Adversary chooses lt = (lt1, . . . , l
t
N) after observing pt

3. Algorithm incurs loss: ⟨pt, lt⟩ =
∑N

i=1 p
t
il
t
i

(We will sometimes write ℓt(pt) to denote the incurred loss.)

4-2



Assumption 1 (Bounded losses) The losses lti are upper bounded for all i ∈ [N ], t ∈ [T ]

Follow-the-Leader (FTL):

A natural choice of algorithm here would be the Follow-the-Leader (FTL) algorithm which

chooses the best performing expert based on losses observed until time t.

pt = argmin
p

t−1∑
τ=1

ℓτ (p).

This strategy effectively reduces the problem to selecting a single expert, which can lead to

poor performance in adversarial setups. Specifically, the adversary can design a sequence of

losses that results in constant regret for the algorithm. Consider the two expert case if the

adversary chooses a sequence of losses [1, 0], [0, 1], [0, 1], [1, 0], [1, 0], [0, 1], [0, 1], [1, 0], [1, 0] · · ·
alternating between the sequences, FTL switch periodically between experts and will incur

a loss that scales linearly in T .

4.2.2 Weighted Majority / Multiplicative Weights

The weighted majority algorithm, also referred to as the multiplicative weights algorithm,

is a framework for decision-making with experts. At the start, the algorithm initializes the

probability distribution p1, typically as a uniform distribution across all experts. Over the

course of rounds t = 1, 2, . . . , the probabilities are updated iteratively using the rule:

pt+1
i ∝ pti(1− ηlti),

where η > 0 is a learning rate, and lti denotes the loss incurred by expert i during round

t. This rule reduces the weight of experts that perform poorly while maintaining higher

weights for better-performing ones. Recall that the halving algorithm discussed in lecture 2

is a special case of this algorithm under the assumption that there exists a perfect expert. Any

expert that incurs a loss has its weight multiplied by 0 at each time step. pt+1
i ∝ pti(1− ηlti),

can be seen as a first-order Taylor series approximation of the standard exponential weighting

update rule:

pt+1
i ∝ pti exp(−ηlti).

To address the issue of linear regret in FTL, we introduce another algorithm ”Follow the

Regularized Leader” method. This approach incorporates entropy regularization into the

objective as a result of which we get a multiplicative weights update, which discourages

overly confident (highly skewed) distributions and promotes diversity. The updated objective

4-3



function becomes:

pt = argmin
p

t−1∑
τ=1

⟨p, lτ ⟩ − 1

η
H(p),

where H(p) = −
∑

i pi log pi is the entropy term. This regularization ensures that the

algorithm maintains a spread across multiple experts, mitigating the effects of adversarial

losses. Consequently, the final update rule for the weights is given by: pti ∝ exp
(
−η
∑t−1

τ=1 l
τ
i

)
.

This formulation balances exploration (assigning nonzero probability to all experts) and

exploitation (favoring experts with lower cumulative losses), achieving robustness and low

regret across rounds. The optimization oracle is defined as:

O(ℓ1:t) = argmin
p

t∑
τ=1

ℓτ (p),

where ℓτ (p) represents the loss function at time τ for a decision vector p.

4.2.3 Analysis

To analyze the Follow-The-Regularized-Leader (FTRL) algorithm, we first introduce an

auxiliary algorithm called Be-The-Leader (BTL). We begin by demonstrating that the cu-

mulative loss incurred by the best expert in hindsight is lower-bounded by the loss of the

Be-The-Leader algorithm in lemma 2. Next, we incorporate entropy regularization, denoted

as l0, which represents the loss incurred by the algorithm at time step 0. We define BTL in

relation to this newly introduced cumulative loss. Finally, we establish an upper bound on

the difference between the losses incurred by FTRL and BTL, thereby completing the proof.

Under the Be-The-Leader (BTL) algorithm, at each time step t, we determine the probability

vector pt by selecting the vector that minimizes the cumulative loss observed up to and

including time step t.

pt = O(ℓ1:t)

However, it is important to note that this approach is not a practical algorithm, as it relies

on prior knowledge of the loss that will be incurred at time t.

The following lemma is a general result for BTL, which holds beyond linear functions.

Lemma 2 (Be the Leader) For any sequence of loss functions ℓ1, . . . , ℓT :

T∑
t=1

ℓt(O(ℓ1:t))︸ ︷︷ ︸
Be the leader

≤
T∑
t=1

ℓt(O(ℓ1:T ))︸ ︷︷ ︸
Loss of the best expert in hindsight

.

4-4



Here, O(ℓ1:t) corresponds to the decisions made incrementally up to time t, while O(ℓ1:T )

represents the best expert in hindsight, based on all cumulative losses.

Now we will pretend we have another loss ℓ0 at step zero, defined as ℓ0 = − 1
η
H(p), where

H(p) denotes the entropy of the probability distribution p. Let l(p) denote the expected loss

incurred while using the distribution p. Using lemma 2,the cumulative regret is bounded as

follows:
T∑
t=0

(
ℓt(pt)− ℓt(p∗)

)
≤

T∑
t=0

ℓt(pt)− ℓt(O(ℓ0:t))

=
T∑
t=0

ℓt(pt)− ℓt(pt+1)

where O(ℓ0:t) refers to the leader with entropy regularization. Now, incorporating the loss

at step zero:

Regret(p1:T ) + ℓ0(p0)− ℓ0(p∗) ≤ ℓ0(p0)− ℓ0(p1) +
T∑
t=1

ℓt(pt)− ℓt(pt+1).

Thus, the regret becomes:

Regret(p1:T ) ≤ ℓ0(p∗)− ℓ0(p1)︸ ︷︷ ︸
≤ log(N)

η

+
T∑
t=1

ℓt(pt)− ℓt(pt+1)︸ ︷︷ ︸
Stability term

. (4.4)

Lemma 3 (Stability)

T∑
t=1

ℓt(pt)− ℓt(pt+1) ≤ 2η
T∑
t=1

ℓt(pt) ≤ 2ηT.

Proof: We have

ℓt(pt)− lt(p
t+1) =

〈
lt,pt − pt+1

〉
(4.5)

=
N∑
i=1

lti

(
pti − pti

e−ηlti∑N
j=1 p

t
je

−ηltj

)
(4.6)

≤
N∑
i=1

ltip
t
i

(
1− e−ηlti

)
(4.7)

≤ η
N∑
i=1

ltip
t
i = η⟨lt,pt⟩ ≤ η (4.8)

4-5



Here equation (4.7) follows from the non-negativity of the loss function and equation (4.8)

follows from assumption 1.

By setting η =
√

log(N)
T

in (4.4) and using lemma 3, we achieve a regret bound of:

Regret = O(
√

T log(N)).

This result highlights the efficiency of the algorithm, demonstrating that the regret grows

sublinearly with the number of rounds T , while also scaling logarithmically with the number

of experts N .

References

[1] Exponential family — wikipedia, the free encyclopedia, 2025.

4-6


	Recap: Entropy maximization under expectation constraint
	Online Learning with Expert Advice
	Setup
	Weighted Majority / Multiplicative Weights
	Analysis


