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5.1 Introduction

• Today: This is the last lecture for online learning covering up to online convex opti-

mization.

• Later: In future lectures we will see how these theoretical tools can be used to derive

“idealized” algorithm, serving as a gateway to practical approximations.

Recall from last time the Follow-the-leader algorithm, in which the leader is greedily picking

the action and expert that looks the best so far. This however can be unstable as the best

expert/action may frequently change.

The key idea: Follow-the-regularized-leader (FTRL) is “optimization with stability”, where

the stability is induced via strong convexity.

Revisiting the problem setting, we are making decisions alongside N experts for 1 ≤ t ≤ T .

At every round t the learner chooses a probability vector xt = (xt
1, x

t
2, . . . , x

t
n). We say

that xt ∈ ∆(N), or the probability simplex of experts, representing the set of probability

distributions of N experts.

Meanwhile, an adversary reveals lt incurring some loss lt(x
t) =< xt, lt >, where ∀t, lt =

(lt1, l
t
2, . . . , l

t
n) ∈ [0, 1]N .

5.1.1 Recap on algorithms

Consider the regret function of choosing expert x from time step 1 ≤ t ≤ T .

Regret(x1:T ) =
T∑
t=1

lt(x
t)−min

x∈X

T∑
t=1

lt(x).

As the regret function measures a sum of T difference of losses, we seek to find a learner for
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which regret grows sub-linearly, and as a result,

Regret(x1:T )

T
→ 0.

As we observed last time, there are a handful of algorithms for which we may achieve a

diminishing regret.

1. Multiplicative weights (update method): In this first approach the probability distri-

butions for the experts is chosen proportional to the losses incurred in previous time

steps:

xt
i ∝

t−1∏
τ=1

(1− ηlτi )

2. Exponential weights (Hedge) Following a similar thought process as multiplicative

weights:

xt
i ∝ exp

(
−η

t−1∑
t=τ

lτi

)
We note that this approach is in fact equivalent to FTRL, in particular when finding

the maximum entropy solution of:

xt = arg min
x∈∆(N)

t−1∑
τ=1

lt(x) +R(x).

where R(x) serves as an entropy regularization term:

R(x) =
1

η

N∑
i=1

xi ln

(
1

xi

)
.

Observe 0 ≤ R(x) ≤ ln(N)
η

.

5.2 Analysis of follow-the-regularized-leader (FTRL)

At its core, FTRL is implementing the idea of optimizing with stability.

We begin our analysis by first examining the Be-the-Regularized-Leader (BRL) approach.

In this case, we assume that the initial round at t = 0 is dedicated to optimizing the

regularization term:

l0 = R(x).
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By being the regularized leader, we “see” the loss lt before choosing a new distribution x. In

other words, we use xt+1 for round t. Consequently, by using the next step to optimize the

previous loss, we perform better than any fixed choice of x. This leads to the inequality:

l0(x
1) +

T∑
t=1

lt(x
t+1) ≤ l0(x) +

T∑
t=1

lt(x), ∀x.

Referring to the definition of regret and using the previously derived inequality, we obtain:

Regret =
T∑
t=1

lt(x
t)−

T∑
t=1

lt(x)

≤
T∑
t=1

(
lt(x

t)− lt(x
t+1)

)
+ l0(x)− l0(x

′).

The second term, l0(x)− l0(x
′), is related to how well the sequence xt+1 performs compared

to the fixed benchmark x. Using the assumption from BRL, we note that:

l0(x)− l0(x
′) = R(x)−R(x′) ≤ ln(N)

η
.

For now, we will ignore this term.

Taking a closer look at the first term,
∑T

t=1(lt(x
t)− lt(x

t+1)), we see that this captures the

stability of the updates in the algorithm. We note that if xt and xt+1 are exactly the same,

this difference is zero, and we have achieved a perfectly stable algorithm. If the update rule

of the algorithm is not drastic, this difference remains small. Conversely, if the updates

between adjacent rounds are large, this difference will also be large.

As a consequence, we can use this observation to understand why Follow-the-Leader (FTL)

is unstable. In FTL, rapidly swapping between different experts results in a large difference

between consecutive terms, leading to instability.

5.2.1 Bounding Stability

Consider a lemma that
T∑
t=1

lt(x
t)− lt(x

t+1) ≤ 2ηT

which implies for values up to a factor of eη ≈ (1 + 2η) that

xt
i ≈ xt+1

i
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So, regret for FTRL:

Regret ≤ 2ηT +
ln(N)

η

By optimizing for η we find that the Regret would be minimum when η =
√

ln(N)
2T

. This

means that regret will grown proportional to

Regret ≤ O
(√

T ln(N)
)

5.3 Online convex optimization

Let’s assume for t = 1, . . . , T :

• Learner chooses xt ∈ X and that this is convex.

• Adversary presents loss function lt → lt(x
t), where lt is convex, differentiable, and

Lipschitz continuous.

l ∇l(x)

x

Figure 5.1: Assuming a l is a convex function, we can use gradient at point x

We can revise our FTRL algorithm by substituting the loss lt with the gradient ∇lt(x
t) at

xt.

xt = arg min
x∈∆(X )

T−1∑
t=1

⟨∇lt(x
t), x⟩+R(x)
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5.3.1 Special case: Online Gradient Descent

For a special case of defining R(x) as the Euclidean Norm

R(x) =
1

2η
∥x∥22 , x ∈ Rd

If we optimize w.r.t x

t−1∑
τ=1

∇lt(x
t) +

1

η
x = 0

x = −η

t−1∑
τ=1

∇lτ (x
τ )

(5.1)

Which can be reformulated as gradient descent step

xt+1 = xt − η∇lt(x
t)
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