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6.1 2-Player Zero-Sum Game

We will start with the most basic two-player normal-form zero-sum game. It has the following

elements:

• 2 Players: Row, Col

• Actions: R,C

• Payoff Matrix: M ∈ R|R|·|C|

– Mij = Amount of money Row wins from Col, if Row plays i ∈ R and Col plays

j ∈ C

• Who goes first?

1. Row goes first, plays i:

– Col plays “best response”: argmin
j

Mij

– Row plays: max
i

(min
j

Mij)

2. Col goes first, plays j:

– Row plays “best response”: argmin
i

Mij

– Col plays: max
i

(min
j

Mij)

A classical example is the infamous “Rock-Paper-Scissors,” which can be described by a

3× 3-payoff matrix below:

M =


R P S

R 0 −1 +1

P +1 0 −1

S −1 +1 0


Now consider a thought experiment where one of the two players has to commit to playing

some action first, and then the other player can choose their action accordingly. In this
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case, there is a clear advantage to play second. In the Rock-Paper-Scissor game, this can be

written as:

max
i

min
j

Mij = −1

min
j

max
i

Mij = +1

To read the expressions above, you can go from left to right. For example, maxi minj means

the row player chooses to play a row indexed by i first, and then the column play gets to

choose a column j later. If both players are optimizing their objective, the resulting payoff

(received by the row player) is then maxi minj Mij.

One could show that everyone wants to go second in any zero-sum game.

Theorem 1 (Everybody Wants to Go Second)

max
i

min
j

Mij ≤ min
j

max
i

Mij

6.2 Randomized Strategies

Now we consider randomized strategies, and see how things can change. Recall that ∆(S)

denotes all probability distributions on a set S.

• Row plays x ∈ ∆(R)

• Col plays y ∈ ∆(C)

• Expected payoff: Ei,j[Mij] =
∑

i,j xiyjMij = x⊺My

Now, let us revisit the Rock-Paper-Scissor game. Suppose Row plays a uniform strategy

x = (1
3
, 1
3
, 1
3
). Then it is easy to see that min

y
x⊺My = 0, which suggests that the column

player has no real advantage for playing second.

Actually, for any normal-form zero-sum game, the second player gains no advantage from

playing second, provided that the first player can randomize their strategy and the second

player does not observe the realization of this randomization.

Theorem 2 (Minimax Theorem - Von Neumann ’28) There exists a value val(M) s.t:

max
x∈∆(R)

min
y∈∆(C)

x⊺My = min
x∈∆(R)

max
y∈∆(C)

x⊺My = val(M)
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Proof: To simplify notations, we will write U(x, y) = x⊺My.

Note that by the “everyone wants to go second” theorem, we have

min
y

max
x

U(x, y) ≥ max
x

min
y

U(x, y)

We will proceed by proof by contradiction. Assume min
y

max
x

U(x, y) = max
x

min
y

U(x, y) + δ,

for some δ > 0. Consider a thought experiment. We will let the two players repeatedly play

the game against each other over T rounds. For each round t: the two players choose a pair

of strategies (xt, yt) via:

• Min player (previously referred to as Col player) plays according to a no-regret algo-

rithm (e.g., FTRL or multiplicative weights), using ℓt(y) = U(xt, y) as loss function;

• Max player best responds:

xt = argmax
x

U(x, yt)

Let Regy =
∑T

t=1 U(xt, yt) − miny

∑T
t=1 U(xt, y). Note that standard algorithms achieve

Regy = O(
√
T ). Let x̄ = 1

T

∑T
t=1 x

t denote the average play by the max player.

1. By no regret of min player:

1

T

T∑
t=1

U(xt, yt)− 1

T
Regy ≤

1

T
min
y

T∑
t=1

U(xt, y),

= min
y

U(x̄, y),

≤ max
x

min
y

U(x, y)

2. By best response of max player:

1

T

T∑
t=1

U(xt, yt) =
1

T

T∑
t=1

max
x

U(x, yt)

≥ 1

T

T∑
t=1

min
y

max
x

U(x, y)

= min
y

max
x

U(x, y)

By our earlier assumption, we expect a gap of δ:

min
y

max
x

U = max
x

min
y

U + δ
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Combining 1. and 2.:

min
y

max
x

U(x, y) ≤ max
x

min
y

U(x, y) +
Regy
T

Note that the average regret term
Regy
T

decreases at a rate of 1√
T
. The fact that the average

regret goes to 0 contradicts our assumption.

Definition 1 A pair (x∗, y∗) such thatmin
y

x∗TMy = val(M)

max
x

xTMy∗ = val(M)

is known as a minimax equilibrium.
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