17-740 Spring 2025
Algorithmic Foundations of Interactive Learning

Lecture 8: Markov Decision Processes

Lecturer : Steven Wu Scribe: Kimberly Truong, Megan Li

8.1 Overview

We will start sequential decision making and reinforcement learning:

1. Elements of Markov Decision Processes (MDP) with a focus on finite horizons

2. Value functions: Bellman Equations/optimality
Note: Bellman is sometimes synonymous with dynamic programming

3. Value/policy iteration

8.2 MDP Notation

Consider the following notation:

e State space S

Action space A

Reward function R : S x A — A([0,1]), or r ~ R(s,a)

Transition operator P : S x A — A(S)

Initial state distribution py € A(S)
with initial state s ~ pyg

Fact 1 MDPs have the Markovian (“memorylessness”) property where its future state(s)
are independent of its history.

8.3 Finite Horizon

Remark 2 Discounted and Infinite Horizon problems also exist, but we will focus on prob-
lems with finite horizons in this class.

Consider the following notation:

e Horizon H

Trajectory 7 = (So, @0, 70, S1y ey SH-1, QH—1,TH-1)

Policy =

Objective

J(m)=E

H-1
ZT’h|50;CLO:H71 NF] (8.1)
h=0

’\S\H

There can be as many as |A deterministic policies.

Value function(s)

— State-value function

Vhﬂ- = E

H-1
Z ’I“h/|Sh = S,0p:H—-1 ~~ 71'] (82)

h'=h

— Action-value function

Qi =E

h'=h

H-1
Z Twlsh = 8,an = @, Qpir:—1 ~ W] (8.3)

8.3.1 (Non-stationary) Markov Policy

In general, a policy 7 : H — A(A), where H represents all partial history.

Definition 1 A non-stationary Markov Policy compresses all partial history into the
current state and time step. mw, denotes a policy defined at time step h.

71 S x [H] — A(A)

8-2

8.3.2 Bellman Equations

For any policy 7, we can derive the following Bellman equations:
Vi =Er, + Vi1 (She1)|sn = s, an ~ 7
Qr(s,a) = E[r, + Qf 1 (Sht1, ani1)|Sh = S, an = a, apq1 ~ 7
Remark 3 Considering just the first time step h = 1, 7™ = my yields:
J (1) = Biomo [V (50)]

Theorem 4 Define V* = (V,...,V}y) recursively as
Vi(s) =0
V(s B) £ Vi (5) = maxEyepieay [1(5.0) + Via ()]
Then, sup .qyyaa) J(T) = EgunVo'(80)]. Now define the policy n* := (mg, ..., 7)) as

V(s,h) - my(s) = argmax{Eyp(s.a)r(s, a) + Vi ()]} (8.8)
Because * achieves value V* for all (s, h), it achieves optimality.
The equation (8.7) is called the Bellman optimality equation (for V). The recursive procedure
(going from H to 0) defined by equations (8.6) and (8.7) is called value iteration.

Similarly, one can also derive the Bellman optimality equation and value iteration in terms
of action value functions:

V(s,a) € Sx A Qp(s,a)=0 (8.9)
V(s,a,h) € S x Ax[H—1] Q;(s,a) =E [r(s, a) +maxQ; (s, a’)] (8.10)
The optimal policy can also be written as

mh(s) = argmax @} (s, a)

8.3.3 Policy Iteration

Another algorithm for computing the optimal value function and policy is policy iteration.
Start with 7(°), and then for each increment of ¢, we compute Q“(t_l) where Q’;{(t_l) =0 and
for all (s, a) pairs, Qg(t_l)(s, a) is computed by (8.5). This is the policy evaluation step. It is
followed by the policy improvement step, during which we greedily update the policy as
W,(lt)(s) = argmax Q" (s, q) (8.11)

a

8-3

Remark 5 This algorithm guarantees local improvement—that is, at every time step h and
state s:

V(s h) : Bynteon Q@ (5,)] = max Q7 (5,0) 2 Byrrco [(5,)] (8.12)

for all t.

Interestingly, by the seminal Performance Difference Lemma, we can ensure global improve-
ment, provided that we can local improvement at every state s. In this context, the lemma
can be stated as follows.

Lemma 6 (Performance Difference Lemma)

H—
Jr) = J(@0) = By penn Z BQ™ (s (sn))] — BIQ™ (51,7 (sn))] | (813)
h=

The left-hand side of the equation is the “global improvement” in the total reward objective
and the right-hand side is the sum over the expected local improvement over time steps.

8-4

	Overview
	MDP Notation
	Finite Horizon
	(Non-stationary) Markov Policy
	Bellman Equations
	Policy Iteration

