
17-740 Spring 2025

Algorithmic Foundations of Interactive Learning

Lecture 8: Markov Decision Processes

Lecturer : Steven Wu Scribe: Kimberly Truong, Megan Li

8.1 Overview

We will start sequential decision making and reinforcement learning:

1. Elements of Markov Decision Processes (MDP) with a focus on finite horizons

2. Value functions: Bellman Equations/optimality

Note: Bellman is sometimes synonymous with dynamic programming

3. Value/policy iteration

8.2 MDP Notation

Consider the following notation:

• State space S

• Action space A

• Reward function R : S × A → ∆([0, 1]), or r ∼ R(s, a)

• Transition operator P : S × A → ∆(S)

• Initial state distribution µ0 ∈ ∆(S)

with initial state s0 ∼ µ0

Fact 1 MDPs have the Markovian (“memorylessness”) property where its future state(s)

are independent of its history.

8-1

8.3 Finite Horizon

Remark 2 Discounted and Infinite Horizon problems also exist, but we will focus on prob-

lems with finite horizons in this class.

Consider the following notation:

• Horizon H

• Trajectory τ = (s0, a0, r0, s1, ..., sH−1, aH−1, rH−1)

• Policy π

• Objective

J(π) = E

[
H−1∑
h=0

rh|S0, a0:H−1 ∼ π

]
(8.1)

There can be as many as |A||S|H deterministic policies.

• Value function(s)

– State-value function

V π
h := E

[
H−1∑
h′=h

rh′ |sh = s, ah:H−1 ∼ π

]
(8.2)

– Action-value function

Qπ
h := E

[
H−1∑
h′=h

rh′ |sh = s, ah = a, ah+1:H−1 ∼ π

]
(8.3)

8.3.1 (Non-stationary) Markov Policy

In general, a policy π : H → ∆(A), where H represents all partial history.

Definition 1 A non-stationary Markov Policy compresses all partial history into the

current state and time step. πh denotes a policy defined at time step h.

π : S × [H] → ∆(A)

8-2

8.3.2 Bellman Equations

For any policy π, we can derive the following Bellman equations :

V π
h = E[rh + V π

h+1(sh+1)|sh = s, ah ∼ π] (8.4)

Qπ
h(s, a) = E[rh +Qπ

h+1(sh+1, ah+1)|sh = s, ah = a, ah+1 ∼ π] (8.5)

Remark 3 Considering just the first time step h = 1, π = π0 yields:

J(π) = Es0∼µ0 [V
π(s0)]

Theorem 4 Define V ∗ = (V ∗
0 , ..., V

∗
H) recursively as

V ∗
H(s) = 0 (8.6)

∀(s, h) : V ∗
h (s) = max

a
Es′∼P (s,a)

[
r(s, a) + V ∗

h+1(s
′)
]

(8.7)

Then, supπ:H→∆(A) J(π) = Es0∼µ[V
∗
0 (s0)]. Now define the policy π∗ := (π∗

0, ..., π
∗
H−1) as

∀(s, h) : π∗
h(s) = argmax

a
{Es′∼P (s,a)[r(s, a) + V ∗

h+1(s
′)]} (8.8)

Because π∗ achieves value V ∗ for all (s, h), it achieves optimality.

The equation (8.7) is called the Bellman optimality equation (for V). The recursive procedure

(going from H to 0) defined by equations (8.6) and (8.7) is called value iteration.

Similarly, one can also derive the Bellman optimality equation and value iteration in terms

of action value functions:

∀(s, a) ∈ S × A Q∗
H(s, a) = 0 (8.9)

∀(s, a, h) ∈ S × A× [H − 1] Q∗
h(s, a) = E

[
r(s, a) + max

a′
Q∗

h+1(s
′, a′)

]
(8.10)

The optimal policy can also be written as

π∗
h(s) = argmax

a
Q∗

h(s, a)

8.3.3 Policy Iteration

Another algorithm for computing the optimal value function and policy is policy iteration.

Start with π(0), and then for each increment of t, we compute Qπ(t−1)
where Qπ(t−1)

H = 0 and

for all (s, a) pairs, Qπ(t−1)

h (s, a) is computed by (8.5). This is the policy evaluation step. It is

followed by the policy improvement step, during which we greedily update the policy as

π
(t)
h (s) := argmax

a
Qπ(t−1)

h (s, a) (8.11)

8-3

Remark 5 This algorithm guarantees local improvement—that is, at every time step h and

state s:

∀(s, h) : Ea∼π(t+1)(s)[Q
π(t)
h (s, a)] = max

a∈A
Qπ(t)

h (s, a) ≥ Ea∼π(t) [Qπ(t)

h (s, a)] (8.12)

for all t.

Interestingly, by the seminal Performance Difference Lemma, we can ensure global improve-

ment, provided that we can local improvement at every state s. In this context, the lemma

can be stated as follows.

Lemma 6 (Performance Difference Lemma)

J(π(t+1))− J(π(t)) = Eτ∼π(t+1)

[
H−1∑
h=1

E[Qπ(t)

(sh, π
(t+1)
h (sh))]− E[Qπ(t)

(sh, π
(t)
h (sh))]

]
(8.13)

The left-hand side of the equation is the “global improvement” in the total reward objective

and the right-hand side is the sum over the expected local improvement over time steps.

8-4

	Overview
	MDP Notation
	Finite Horizon
	(Non-stationary) Markov Policy
	Bellman Equations
	Policy Iteration

