
17-740 Spring 2025

Algorithmic Foundations of Interactive Learning

Lecture 9: DAgger & Covariate Shift in IL

Lecturer : J. Andrew (Drew) Bagnell Scribe: Bardienus Duisterhof,

Kimberly Truong, Khush Agrawal

9.1 Overview

We will cover the basics of imitation learning, an invitation to imitation. Among other things,

we will cover DAgger (Dataset Aggregation) and how it can improve imitation learning (IL)

performance in the presence of covariate shift.

9.2 Imitation Learning (IL)

Imitation learning is when we do not have access to a reward function, and instead aim

to learn from expert demonstrations. One flavor of imitation learning is offline behavioral

cloning, where we try to mimic the actions of the expert directly. In contrast, interactive

imitation learning algorithms (as we discuss in this lecture) instead attempt to match the

outcomes of expert actions / overall expert behavior.

A natural question one might have “how is IL different from most other ML problems?”

• Decisions have consequences: errors pass through a feedback loop and compound

→ distribution shift, test ̸= train distribution. For example, a small steering error in

a self-driving car can cause the vehicle to drift toward the edge of the road. If the

training data only contains examples from driving in the center of the lane, the policy

won’t know how to correct this drift, potentially causing the car to drive off the track

entirely.

• Sequential decisions: Actions and decisions are purposeful and sequential. They

shape future states and returns, building toward long-term goals rather than just re-

sponding to the current state.

• Non-IID data: The sequential nature of decision-making breaks the independent

and identically distributed data assumption required by traditional supervised learning

methods.

9-1



9.2.1 Learning to drive by imitation

Consider an RGB camera image (state s) → policy π(a|s) → distribution over actions a,

where actions represent steering angles. As proposed by [1], we can use behavioral cloning

to learn from expert demonstrations. Given a dataset D = {(si, ai)}Ni=1 of state-action pairs

demonstrated by an expert policy πE, we solve the maximum likelihood problem:

max
π∈Π

∑
ξ∈D

logPπ(ξ) = max
π∈Π

∑
ξE∈D

log

(
H∏
h

π(aEh |sEh )

)
= max

π∈Π

∑
ξE∈D

H∑
h

log π(aEh |sEh ) (9.1)

This objective aims to maximize the probability of taking the same actions as the expert in

the states encountered by the expert and is the standard, supervised learning to imitation.

Now let’s say, at every step h, there is an ϵ probability the policy disagrees with the expert.

Each mistake at time step h can lead the learner to deviate from the expert on all subsequent

steps. This results in compounding errors. After H steps, the resulting gap on J(π) can be

expressed as:

J(π)− J(πE) ≤ ϵ
H∑

h=1

(H − h) = ϵ
H(H − 1)

2
∈ O(H2ϵ) (9.2)

The quadratic dependence on horizon length H tells us that errors compound over time.

So then how do we mitigate this compounding error?

Core idea: use interaction. Intuitively, this is because interaction allows us to see states

from the test distribution at training time, eliminating the covariate shift.

Algorithm 1 : Forward Training. We train a sequence of policies π1, π2, . . . , πH , where πh

is trained to predict the action the expert would have taken at time step h, given that we

followed policies π1, . . . , πh−1 for the first h − 1 steps. So, at h = 1, we perform vanilla

behavioral cloning to learn π1. Then, at h = 2, we roll out π1 and ask the expert what they

would have done, had they been in our situation, collecting a dataset of action labels. We

then train π2 via behavioral cloning on this new, on-policy dataset and repeat till h = H.

Assume that at each step, we make a mistake with probability ϵ and such a mistake can at

most cost us u (we’ll explore what u means in a bit). Then, simply by summing up over

timesteps, we have

J(πforward)− J(πE) ≤
H∑
h

p(mistake) ·max cost = ϵuH (9.3)

The bound is now linear in H rather than quadratic, because each policy πh is trained on the

distribution of states that the learner actually encounters at step h. However, this approach

9-2



requires training H separate policies, which becomes impractical for large H, begging the

question of how we train a stationary policy interactively.

Algorithm 2 : DAgger: dataset aggregation. DAgger [2] performs a similar procedure to

learn a single, stationary policy. Algorithm 1 describes the algorithm.

Algorithm 1 DAgger: Dataset Aggregation

Require: Initial dataset D0 collected from offline data

Train initial policy π1 on D0

for i = 1 to N do

Execute πi in the environment to collect trajectories ξi
Query expert for action labels at all states in ξi
Aggregate action labels into dataset: Di ← Di−1 ∪ action labels

Train new policy πi+1 on aggregated dataset Di via behavioral cloning

end for

return Best of N policies on validation data.

As we’ll prove below, with large enough N , we get:

J(π)− J(πE) ≤ uHϵ. (9.4)

With DAgger we reduce the problem of imitation learning to that of no-regret online learning.

In particular, the “dataset aggregation” procedure is implementing the follow the (regular-

ized) leader algorithm we discussed earlier. The environment is not an adversary per se but

the no-regret framework is still useful because we’re not in the statistical / iid setting.

Analysis. To analyze the performance of DAgger, consider the following “zero-one” loss: 1

LπE
(π, s) = Ea∼π [1(a ̸= πE(s))] . (9.5)

This is the probability that our action doesn’t match the expert’s. We can take the expec-

tation over states generated by πi to get the sequence of loss functions we will feed to our

no-regret online learner (FTRL / dataset aggregation in this case):

ℓi(π) = Es∼ρπ [LπE
(π, s)]. (9.6)

Critically, notice that this expectation is taken over states from the learner’s state distribu-

tion rather than the expert’s – this is what distinguishes this loss from behavioral cloning.

1We’re assuming the expert is deterministic here for simplicity, see [2] for the more general proof.

9-3



We can then express the optimization problem we’re solving at each round of DAgger as

πi+1 = min
π∈Π

i∑
j

ℓj(π). (9.7)

A natural question when reading the above equation might be “why are we optimizing over

the history of past visitation distributions when we care about our current policy’s visitation

distribution?” Observe that if the policy we’re choosing doesn’t change too much from

what we’ve seen in the past, minimizing the above equation will give us good guarantees.

Intuitively, this is what the no-regret property of FT(R)L means. Perhaps the easiest way

to see this is to notice that each new dataset is a vanishing fraction of the overall dataset as

N →∞, which means our learning process should eventually stabilize.

Let’s write out the cumulative loss accumulated by the no-regret online learner:

1

N

N∑
i=1

[li(πi)] =
1

N

N∑
i=1

[li(πi)− li(π
⋆)]︸ ︷︷ ︸

average regret

+
1

N

N∑
i=1

li(π
⋆)︸ ︷︷ ︸

expert loss

, (9.8)

where π⋆ = minπ∈Π
∑N

i ℓi(π). Note: π
⋆ need not necessarily be πE if we’re in the misspecified

setting (i.e. πE /∈ Π). If we’re in the realizable setting (i.e. πE ∈ Π), the second term on the

RHS must be 0. We’ll assume this for simplicity for the rest of the note.

Due to the no-regret property of FT(R)L / dataset aggregation, we know that the first term

goes to zero on average. Via the Performance Difference Lemma, we can link the regret of

our online learner to the performance of the learned policy. To do so, we’ll first need to

discuss the concept of recoverability more formally – the u from above.

Recoverability. A key challenge in imitation learning is ensuring that mistakes made by the

learned policy do not cause large deviations in performance from the expert. The notion of

recoverability helps formalize this. Recoverability in this context means that the maximum

cost a single-step deviation from the expert could inflict is bounded. In math,

QπE
h (s, a)−QπE

h (s, πE(s)) ≤ u, ∀(s, a) ∈ S ×A. (9.9)

Consider the following two cases: (1) Flat Terrain: You’re walking on a wide, flat field. If you

take a slightly wrong step, you can easily recover — the cost u is small. (2) Walking Along

a Cliff: Now suppose you’re walking along a narrow mountain ridge. A small misstep could

send you tumbling down the cliff — the cost u is very high. In both cases, ϵ could be the same

(say, you make a mistake 10% of the time). But the overall performance degradation depends

heavily on u. On the flat field, Tϵu might still be small. But on the cliff, even small ϵ leads

9-4



to catastrophic performance — hence, the bound becomes loose unless you can ensure very

low ϵ. This highlights why recoverability matters. If the expert can’t recover from mistakes

(i.e., the environment is unforgiving), even DAgger can’t guarantee good performance unless

the learner gets very accurate.

Completing the Proof. Assume that the expected 0-1 classification loss (probability of

disagreement with expert) at each time step is bounded by ϵ. This corresponds to the average

regret is bounded by ϵ in the realizable setting. If the average regret is bounded by ϵ, there

must exist some i ∈ [N ] that has relative loss bounded by ϵ. Furthermore, assume that the

recoverability condition 9.9 holds for some constant u. Then, the performance gap between

the learner and the expert can be bounded as

J(π)− J(πe) ≤ Hϵu. (9.10)

The PDL tells us that for any policy π,

J(π)− J(πE) =
H∑
h

Esh∼π[Q
πE
h (sh, π(sh))−QπE

h (sh, πE(sh))]. (9.11)

By Hölder’s inequality, each term in the sum is bounded by ϵu for some i ∈ [N ], giving us:

min
i∈N

J(πi)− J(πE) ≤
H∑
h

ϵu = Hϵu. (9.12)

QED!

References

[1] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances

in neural information processing systems, 1, 1988.

[2] Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation

learning and structured prediction to no-regret online learning, 2011.

9-5


	Overview
	Imitation Learning (IL)
	Learning to drive by imitation


